
MACHINE LEARNING IN
BIOINFORMATICS

Part 2: Unsupervised learning

MACHINE LEARNING IN
BIOINFORMATICS

Part 2: Unsupervised learning

František Mráz

KSVI MFF UK

Sources

• Yang, Zheng Rong. Machine learning approaches to bioinformatics.
Science, Engineering, and Biology Informatics — Vol. 4. World
scientific, 2010.

• Bishop, Christopher M. Pattern recognition and machine learning. Vol.
4. No. 4. New York: Springer, 2006.

Machine Learning in Bioinformatics 2March 7, 2019

Learning for Analysis of
Biological Data

• Example: A mass spectrometry experiment on a set of plants

• Generates many thousands of metabolites (intermediates and products
of metabolism; the term metabolite is usually restricted to small molecules
<= 900 daltons (1 dalton = weight of a nucleon (neutron or proton)))

• Each metabolite can be represented by mass and abundance values for
replicates

• Based on masses it is possible to infer a number of chemical formulas of
candidate compounds from different pathways

• One metabolite can be mapped to multiple compounds

• Supervised learning

• Find a mapping from one data space to another data space

Chemical formulas → pathways

• Unsupervised learning

• One data space is missing – reorganize the data space to explore the
missing data space

Machine Learning in Bioinformatics 3March 7, 2019

https://en.wikipedia.org/wiki/Metabolite
https://en.wikipedia.org/wiki/Small_molecule

Why Unsupervised
Learning

Example: Analysis of gene expression

• It is possible to monitor simultaneously thousands of genes and
proteins under different experimental conditions – for studying
genome- and proteome-wide functions and regulatory mechanisms

• Dimensionality reduction – to reduce the dimensionality of the
‘gene space’ (e.g. in microarray data) by constructing ‘super-genes’ –
for simplifying structure of the data

• Visualizations – reduce the data to 2 or 3 dimensions (e.g.
principal components analysis)

• Clustering – partitioning the data into groups of objects more
‘similar’ to each other than objects in different groups – identifying
biologically relevant groups of both genes and samples and have also
provided insight into gene function and regulation

Machine Learning in Bioinformatics 4March 7, 2019

Subjects of Unsupervised
Learning

1. Density estimation
• Find information hidden in the data

• E.g. the data can be generated from a normal distribution (i.e. 𝑥𝑖 is a
real value) and we can find the parameters of the Gaussian (mean and
standard deviation)

𝜇 =
1

𝑁

𝑖=1

𝑁

𝑥𝑖 𝜎 =
1

𝑁 − 1

𝑖=1

𝑁

𝑥𝑖 − 𝜇 2

where 𝑥1, 𝑥2, … , 𝑥𝑁 are the data points, 𝑁 ≥ 1
• Gaussian distribution is regarded as data structure and parameters are

regarded as inference rules

• Usually methods from statistics

2. Data visualization

3. Cluster analysis

Machine Learning in Bioinformatics 5March 7, 2019

Subjects of Unsupervised
Learning

1. Density estimation

2. Data visualization

• Often many dimensional data
is not possible to visualize

• E.g. gene expression data for a
disease may contain only a few
samples, but with
1000100000 genes as
variables

3. Cluster analysis

Machine Learning in Bioinformatics 6March 7, 2019

Mapping four dimensional Iris data to a 2-
dimensional space. Setosa is well
separated from the other two species,
which are difficult to separate.

Subjects of Unsupervised
Learning

1. Density estimation

2. Data visualization

3. Cluster analysis

• A data set may be viewed as a composition of disjointed sub-data
structures

• Each sub-structure contains data points with similar properties

• How to find these sub-structures and quantitatively describe them?

Machine Learning in Bioinformatics 7March 7, 2019

PROBABILITY DENSITY ESTIMATION
APPROACHES

Part 2: Unsupervised learning

March 7, 2019 Machine Learning in Bioinformatics 8

Probability Density
Estimation Approaches

1. The histogram approach – the simplest method

2. A parametric approach – assumes a structure in data (e.g. normal
distribution); training data not kept

3. Non-parametric approaches – no explicit data structure

4. Semi-parametric approach

Machine Learning in Bioinformatics 9March 7, 2019

𝑛𝑖 = #data points in bin 𝑖
𝑝𝑖 = probability a point

falls in bin 𝑖

How to approximate the
probability density
function?

1. Histogram Approach

• Each coordinate is divided into segments of a fixed
length (called bins)

• If 𝑥 ∈ 𝑎, 𝑏 , the interval is divided into 𝐾 bins of
length

∆=
𝑏 − 𝑎

𝐾

• Each training data point is assigned to the bin it
belongs

• Frequency of each bin is

#training data falling into the bin

#all training data

• The frequency is used as the probability how likely a
point falls into the bin – simple visualization is a
histogram

Machine Learning in Bioinformatics 10March 7, 2019

𝑝𝑖 =
𝑛𝑖
𝑁

#H
it

s
𝑓𝑖 =

𝑛𝑖
𝑁∆

1. Histogram Approach

March 7, 2019 Machine Learning in Bioinformatics 11

is too narrow

is too wide

1. Histogram Approach

• Pros:

• Simple method, no explicit data structure is supposed

• No need to fit a model to the data

• We just compute some very simple statistics (the number of data points
in each bin) and store them

• Cons:

• How wide should the bins be? (width=regularizer)

• Do we want the same bin-width everywhere?

• Do we believe the density is zero for empty bins?

• for 𝑑 variables we need 𝐾𝑑 bins; e.g. for 𝐾 = 10 and 𝑑 = 10 require
1010 bins

• The density has discontinuities at the bin boundaries

• We must be able to do better by some kind of smoothing

Machine Learning in Bioinformatics 12March 7, 2019

1. Histogram Approach

• Cons (cont.):

• Positions of bin boundaries can change the outcome; see the example
from the documentation for scikit-learn

• On the left: bin boundaries linspace(-5,10,10)

• On the right: bin boundaries linspace(-4.25,10.75,10)

Machine Learning in Bioinformatics 13March 7, 2019

• Assumes a data structure before estimating the probability

• After constructing the density probability function, the training data are
discarded

• If we assume a Gaussian data structure
• A training set of size 𝑁 is 𝐗 = 𝑥𝑖 𝑖=1

𝑁 , 𝑥𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑑
𝑇 ∈ ℝ𝑑 , (i.e. 𝑥𝑖 is a

column vector)

• The training data points are generated by the assumed Gaussian data
structure with likelihood ℒ

ℒ =ෑ

𝑖=1

𝑁

𝑝 𝑥𝑖 where 𝑝 𝑥𝑖 =
1

2𝜋 𝑑 𝚺
𝑒−

𝑥𝑖−𝜇
𝑇𝚺−1 𝑥𝑖−𝜇
2

where 𝚺 ∈ ℝ𝑑×𝑑 is the covariance matrix (see below), 𝚺−1 is its inverse and
𝚺 its determinant, 𝜇 ∈ ℝ𝑑 is the mean vector

• The likelihood function is maximized

2. Parametric Approach

Machine Learning in Bioinformatics 14March 7, 2019

1D Gaussian probability
density function

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒
−

𝑥−𝜇 2

2𝜎2

2. Parametric Approach

• The covariance matrix 𝚺 = E 𝑥 − 𝜇 𝑥 − 𝜇 𝑇 for 𝑥 ∈ 𝐗, i.e.

𝚺𝑖𝑗 = 𝑐𝑜𝑣 𝐱𝑖 , 𝐱𝑗 = E 𝐱𝑖 − 𝜇𝑖
𝑇 𝐱𝑗 − 𝜇𝑗

• If the training data are orthogonal, the covariance matrix becomes
diagonal

𝚺 =

𝜎1
2 0

0 𝜎2
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜎𝑑

2

• If the data are homogenous (i.e. 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑑 = 𝜎)

• 𝚺 = 𝜎2𝐈 where 𝐈 is the identity matrix

• 𝜇 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖 and 𝜎2 =

1

𝑁𝑑
σ𝑖=1
𝑁 𝑥𝑖 − 𝜇 𝑇 𝑥𝑖 − 𝜇

Machine Learning in Bioinformatics 15March 7, 2019

𝑥, 𝜇 are a column vectors

2. Parametric Approach

• Parametric distribution models are restricted to specific forms, which
may not always be suitable; for example, consider modelling a
multimodal distribution with a single, unimodal model.

Machine Learning in Bioinformatics 16March 7, 2019

3. Non-Parametric
Approach

• Building a model without clearly defined structure

• For a prediction all (training) data are needed

• Local density estimators estimate the density in a small region

𝑝 𝑥 =
𝐾

𝑁𝑉

where 𝐾 is the number of points in the region, 𝑉 is the volume of
the region, 𝑁 is the total number of points

• Two common methods

A. Kernel approach

B. 𝐾-nearest neighbour approach

Machine Learning in Bioinformatics 17March 7, 2019

d dimensional

3A. Kernel Density
Estimators

• Use regions centered on the data points

• Allow regions to overlap

• Each region contributes by 1/𝑁 to the total density

• Avoiding discontinuities by using regions with soft edges

Machine Learning in Bioinformatics 18March 7, 2019

𝑝 𝑥 =
1

𝑁

𝑛=1

𝑁
1

(2𝜋ℎ2)𝑑/2
exp −

𝑥 − 𝑥𝑛
2

2ℎ2

is too narrow

is too wide

1D Gaussian probability
density function

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒
−

𝑥−𝜇 2

2𝜎2

ෑ

𝑖=1

𝑁

𝑝 𝑥𝑖 where 𝑝 𝑥𝑖 =
1

2𝜋 𝑑 𝚺
𝑒−

𝑥𝑖−𝜇
𝑇𝚺−1 𝑥𝑖−𝜇
2

3B. K-Nearest Neighbor Approach for
Density Estimation

• Similarly to the histogram approach

• Vary the size of a hyper-sphere around each test point so that exactly
𝐾 training data points fall inside the hyper-sphere.

• fix 𝐾, estimate 𝑉 from the data. Consider a hyper-sphere centred on 𝑥
and let it grow to a volume 𝑉∗, that includes 𝐾 of the given 𝑁 data
points

𝑝 𝑥 =
𝐾

𝑁𝑉∗

• Does this give a fair estimate of the density?

• Nearest neighbors is usually used for classification or regression:

• For regression, average the predictions of the 𝐾-nearest neighbors.

• For classification, pick the class with the most votes.

Machine Learning in Bioinformatics 19March 7, 2019

3B. K-Nearest Neighbour Approach
for Density Estimation

March 7, 2019 Machine Learning in Bioinformatics 20

𝐾 acts as a smoother.

4. Semi-Parametric
Approach

• We assume that data are generated from a model with 𝑀 Gaussians

• Estimated density

𝑓 𝑥 =

𝑚=1

𝑀

𝑤𝑚𝐺𝑚 𝑥

where 𝑤𝑚 , 0 ≤ 𝑤𝑚 ≤ 1 is the contribution of the m-th component

𝑚=1

𝑀

𝑤𝑚 = 1

• 𝐺𝑚(𝑥) is the 𝑚-th component Gaussian

𝐺𝑚 𝑥 =
1

2𝜋 𝑑 𝚺𝑚
𝑒−

𝑥𝑖−𝜇
𝑇𝚺𝑚

−1 𝑥𝑖−𝜇
2

• For fitting of such mixture model, the Expectation-Maximization (EM)
algorithm is used [EM-algorithm is not presented here]

Machine Learning in Bioinformatics 21March 7, 2019

DIMENSIONALITY REDUCTION

Part 2: Unsupervised learning

March 7, 2019 Machine Learning in Bioinformatics 22

• Reduces time complexity: Less computation

• Reduces space complexity: Less parameters

• Saves the cost of observing the feature

• Simpler models are more robust on small datasets

• Better interpretable; simpler explanation

• Data visualization (structure, groups, outliers, etc.) if plotted in 2 or 3 dimensions

➢ A (one-to-one) mapping 𝜙 of the set of data points 𝒟 = 𝑥𝑛 ∈ ℝ𝑑
𝑛=1
𝑁 where 𝑁 is

the number of data points, 𝑑 ≥ 2 is their dimension, to ෩𝒟 = 𝑦𝑛 ∈ ℝ
෨𝑑
𝑛=1

𝑁
and,

where ሚ𝑑 ≤ 2 is the new dimension;
𝜙 𝑥𝑛 = 𝑦𝑛, ∀𝑛 ∈ 1, . . . , 𝑁

➢ If 𝑥𝑚 is the nearest neighbor of xn ∈ 𝒟, we expect that
𝑦𝑚 − 𝑦𝑛 ≤ 𝑦𝑖 − 𝑦𝑛 , ∀𝑖 ∈ 1, . . . , 𝑁

Why

Machine Learning in Bioinformatics 23March 7, 2019

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Feature Selection vs
Extraction

• Feature selection:

• Choosing 𝑘 < 𝑑 important features, ignoring the remaining 𝑑 − 𝑘

• Subset selection algorithms

• Feature extraction (feature derivation):

• Project the original 𝐱𝑖 , 𝑖 = 1, … , 𝑑 dimensions to new 𝑘 < 𝑑 dimensions,
𝐳𝑗 , 𝑗 = 1, … , 𝑘

• Algorithms:

• Principal components analysis (PCA)

• Linear discriminant analysis (LDA)

• Factor analysis (FA)

• Multidimensional scaling (MDS)

Machine Learning in Bioinformatics 24March 7, 2019

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Subset Selection

• There are 2𝑑 subsets of 𝑑 features

1. Forward search:
• “Add the best feature at each step”

• Set of features 𝐹 initially

• At each iteration, find the best new feature

𝑗 = argmin
𝑖

𝐸𝑟𝑟𝑜𝑟(𝐹 ∪ 𝐱𝑖)

• Add 𝐱𝑖 to 𝐹 if 𝐸𝑟𝑟𝑜𝑟(𝐹 ∪ 𝐱𝑖) < 𝐸𝑟𝑟𝑜𝑟 𝐹

• Hill-climbing 𝑂(𝑑2) algorithm

2. Backward search: Start with all features and remove one (which
causes the least error) at a time

3. Floating search:
• Set the set of selected features 𝐹 ∶=

• Set the set of possible features 𝑃 to the set of all features

• Alternate adding 𝑘 features to 𝐹 and removing 𝑙 features from 𝑃

Machine Learning in Bioinformatics 25March 7, 2019

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

𝐗 = 𝐱1, 𝐱2, … , 𝐱𝑑 =

𝑥1
𝑇

𝑥2
𝑇

⋮
𝑥𝑁
𝑇

=

𝑥11 𝑥12
𝑥21 𝑥22

… 𝑥1𝑑
… 𝑥2𝑑

⋮ ⋮
𝑥𝑁1 𝑥𝑁2

⋱ ⋮
… 𝑥𝑁𝑑

• Find a low-dimensional space such that when 𝑥 is projected there,

information loss is minimized.

• The projection of 𝑥 on the direction (a column vector) 𝑤1 is:

𝑧 = 𝑤1
T𝑥

• Find 𝑤1 such that Var(𝑧) is maximized

Var 𝑧 = Var 𝑤1
T𝑥 = E 𝑤1

T𝑥 − E 𝑤1
T𝑥

2
= E 𝑤1

T𝑥 − 𝑤1
T𝜇

2
=

= E 𝑤1
T𝑥 − 𝑤1

T𝜇 𝑤1
T𝑥 − 𝑤1

T𝜇 = 𝐸 𝑤1
T x − 𝜇 𝑥 − 𝜇 T 𝑤1

= 𝑤1
TE 𝑥 − 𝜇 𝑥 − 𝜇 T 𝑤1 = 𝑤1

T𝚺𝑤1

where Var 𝑥 = E 𝑥 − 𝜇 𝑥 − 𝜇 T = 𝚺 is the correlation matrix

Principal Components
Analysis (PCA)

Machine Learning in Bioinformatics 26March 7, 2019

E 𝑥 = 𝜇

Principal Components
Analysis (PCA)

• Find a transformation matrix

𝐖 = 𝑤1 ⋯ 𝑤𝑘

we will use for a transformation
𝑧 = 𝐖𝑇 𝑥 − 𝜇

Machine Learning in Bioinformatics 27March 7, 2019

• Without constraint we could pick a very big 𝑤1.

• Maximize Var(𝑧) subject to 𝑤1 = 1 using Lagrange multiplier
method

max
𝑤1

𝑤1
T𝚺𝑤1 − 𝛼 𝑤1

T𝑤1 − 1

• The derivative with respect to 𝑤1 (all partial derivatives according to
constituents of 𝑤1) should be 0

2𝚺𝑤1 − 2𝛼𝑤1 = 0

• Hence 𝚺𝑤1 = 𝛼𝑤1 that is, 𝑤1 is an eigenvector of 𝚺

• We want to maximize Var 𝑧 = 𝑤1
T𝚺𝑤1 = 𝛼𝑤1

T𝑤1 = 𝛼 ⟹ choose the
eigen vector with the largest eigenvalue

• Second principal component: maxVar 𝑧2 , s.t. 𝑤2 = 1 and 𝑤2 is
orthogonal to 𝑤1

max
w2

𝑤2
T𝚺𝑤2 − 𝛼 𝑤2

T𝑤2 − 1 − 𝛽 𝑤2
T𝑤1 − 0

Principal Components
Analysis (PCA)

Machine Learning in Bioinformatics 28March 7, 2019

https://en.wikipedia.org/wiki/Lagrange_multiplier

Principal Components
Analysis (PCA)

• Second principal component: maxVar 𝑧2 , s.t. 𝑤2 = 1 and 𝑤2 is
orthogonal to 𝑤1

max
w2

𝑤2
T𝚺𝑤2 − 𝛼 𝑤2

T𝑤2 − 1 − 𝛽 𝑤2
T𝑤1 − 0

• The derivative with respect to 𝑤2 should be 0

(*) 2𝚺𝑤2 − 2𝛼𝑤2 − 𝛽𝑤1 = 0

• Pre-multiply by 𝑤1
2𝑤1

T𝚺𝑤2 − 2𝛼𝑤1
T𝑤2 − 𝛽𝑤1

T𝑤1 = 0

2𝑤1
T𝚺𝑤2 − 𝛽 = 0

• 𝑤1
T𝑤2 = 0, 𝑤1

𝑇𝚺𝑤2 is a scalar and equals to the transpose 𝑤2
𝑇𝚺𝑤1

2𝑤1
𝑇𝚺𝑤2 = 𝑤2

𝑇𝚺𝑤1 = 𝜆1𝑤2
𝑇𝑤1 = 0

• Then 𝛽 = 0 and from (*) we have 𝚺𝑤2 = 𝛼𝑤2 and 𝑤2 should be an
eigenvector of 𝚺

• Similarly for 𝑤3, 𝑤4, …

Machine Learning in Bioinformatics 29March 7, 2019

What PCA Does?

𝑧 = 𝐖T (𝑥 – 𝜇)

where the columns of 𝑾 are the eigenvectors of 𝚺, and 𝜇 is the
sample mean

Centers the data at the origin and rotates the axes

Machine Learning in Bioinformatics 30March 7, 2019

𝑥
1

𝑥2

𝑧1

𝑧2

How to Choose the Number
of Principal Components?

• Proportion of Variance
(𝑃𝑜𝑉) explained, when 𝜆i

are sorted in descending
order

• Typically, stop at 𝑃𝑜𝑉 > 0.9

• Scree graph plots of 𝑃𝑜𝑉 vs
𝑘, stop at “elbow”

Machine Learning in Bioinformatics 31March 7, 2019

SK: Sutinový graf

𝜆1 + 𝜆2 +⋯+ 𝜆𝑘
𝜆1 + 𝜆2 +⋯+ 𝜆𝑘⋯+ 𝜆𝑑

PCA on Optidigits

March 7, 2019 Machine Learning in Bioinformatics 32

Optidigits plotted into
the first two
dimensions found by
PCA

Factor Analysis

• Find a small number of factors 𝐳 ∈ ℝ𝑁, which when combined
generate 𝐱:

𝐱𝑖 − 𝜇𝑖 = 𝑣𝑖1𝐳1 + 𝑣𝑖2𝐳2 +⋯+ 𝑣𝑖𝑘𝐳𝑘 + 𝛆𝑖

where 𝐳𝑗 , 𝑗 = 1, … , 𝑘 (𝑘 < 𝑑) are the latent factors with

E 𝐳𝑗 = 0, Var 𝐳𝑗 = 1, Cov 𝐳𝑖 , 𝐳𝑗 = 0, 𝑖 ≠ 𝑗,

𝛆𝑖 are the noise sources

E 𝛆𝑖 = 𝜓𝑖; Cov 𝛆i, 𝛆𝑗 = 0, 𝑖 ≠ 𝑗; Cov 𝛆𝑖 , 𝐳𝑗 = 0, ∀𝑖, 𝑗

and 𝑣𝑖𝑗 are the factor loadings, 𝐕 = 𝑣𝑖𝑗 𝑑×𝑘

Machine Learning in Bioinformatics 33March 8, 2019

PCA vs FA

How to transform a vector 𝑥 into new vector 𝑧?

• FA From 𝑧 to 𝑥 𝑥 − 𝜇 = 𝐕𝑧 + 𝜀

• PCA From 𝑥 to 𝑧 𝑧 = 𝐖T 𝑥 − 𝜇

Machine Learning in Bioinformatics 34March 7, 2019

𝑧1

𝑧2

𝑧𝑘

⋮

𝑥1

𝑥3

𝑥𝑑

⋮

𝑧1

𝑧2

𝑧𝑘

⋮

𝑥2
𝑣

FA

𝑤

PCA

variables new
variables

factors

Factor Analysis

• In FA, factors 𝑧𝑗 are stretched, rotated and translated to generate 𝑥

Machine Learning in Bioinformatics 35March 7, 2019

Multidimensional
Scaling

• Given pairwise distances between N points

𝑑𝑖,𝑗
∗ = 𝑥𝑖 − 𝑥𝑗 𝑖, 𝑗 = 1,… , 𝑁

place the points on a low-dim map s.t. distances are preserved.

• 𝑧 = 𝑔 𝑥 𝜃

1. Classical MDS: 𝑧 = 𝑔 𝑥 𝜃 = 𝐖T𝑥, i.e. 𝜃 = 𝐖

2. In general: find 𝜃 that minimizes Sammon stress

E 𝜃|X =
1

σ𝑖<𝑗 𝑑𝑖,𝑗
∗

𝑖=1

𝑁

𝑗=𝑖+1

𝑁
𝑑𝑖,𝑗
∗ − 𝑧𝑖 − 𝑧𝑗

2

𝑑𝑖,𝑗
∗

E 𝜃|X is minimized using gradient descent methods or some other

iterative method

Machine Learning in Bioinformatics 36March 8, 2019

ഥ𝑚1

ഥ𝑚2

Linear Discriminant
Analysis

• a supervised method for dimensionality

reduction (it is almost classification)

• Find a low-dimensional space such that

when x is projected, classes are well-separated.

• Find 𝑤 that maximizes

𝐽 𝑤 =
𝑚1−𝑚2

2

𝑠1
2+𝑠2

2

• We are given a sample 𝑋 = 𝑥𝑡, 𝑟𝑡 𝑡=1
𝑁 such that

Machine Learning in Bioinformatics 37March 7, 2019

𝑟𝑡 = ቊ
1 if 𝑥𝑡 ∈ 𝐶1
0 if 𝑥𝑡 ∈ 𝐶2

𝑚1 = 𝑤T ഥ𝑚1 =
σ𝑡𝑤

T𝑥𝑡𝑟𝑡

σ𝑡 𝑟𝑡
𝑠1
2 = σ𝑡 w

T𝑥𝑡 −𝑚1
2
𝑟𝑡

𝑚2 = 𝑤T ഥ𝑚2 =
σ𝑡𝑤

T𝑥𝑡 1−𝑟𝑡

σ𝑡(1−𝑟𝑡)
𝑠2
2 = σ𝑡 𝑤

T𝑥𝑡 −𝑚2
2
(1 − 𝑟𝑡)

Linear Discriminant
Analysis

• Between-class scatter:
𝑚1 −𝑚2

2 = 𝑤T ഥ𝑚1 − 𝑤T ഥ𝑚2
2

= 𝑤T ഥ𝑚1 − ഥ𝑚2 ഥ𝑚1 − ഥ𝑚2
T𝑤

= 𝑤T𝐒𝐵𝑤 where 𝐒𝐵 = ഥ𝑚1 − ഥ𝑚2 ഥ𝑚1 − ഥ𝑚2
T

• Within-class scatter:
𝑠1
2 =

𝑡

𝑤T𝑥𝑡 −𝑚1
2
𝑟𝑡

=

𝑡

𝑤T 𝑥𝑡 − ഥ𝑚1 𝑥𝑡 − ഥ𝑚1
T𝑤𝑟𝑡 = 𝑤T𝐒1𝑤

where 𝐒1 =

𝑡

𝑥𝑡 − ഥ𝑚1 𝑥𝑡 − ഥ𝑚1
T𝑟𝑡 for 𝐒2 analogically

𝑠1
2 + 𝑠2

2 = 𝑤T𝐒𝑊𝑤 where 𝐒𝑊 = 𝐒𝟏 + 𝐒2

Machine Learning in Bioinformatics 38March 8, 2019

• Find 𝑤 that max

𝐽 𝑤 =
𝑤𝑇𝐒𝐵𝑤

𝑤T𝐒𝑊𝑤
=

𝑤T ഥ𝑚1 − ഥ𝑚2
2

𝑤T𝐒𝑊𝑤

• LDA solution (the derivative of 𝐽(𝑤) must be zero):

𝑤 = 𝑐 ⋅ 𝐒𝑊
−1 ഥ𝑚1 − ഥ𝑚2 for some constant 𝑐

we can take c = 1

• Parametric solution:

• Moreover, this solution can be used also when the classes are not normal

Fisher’s Linear
Discriminant

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
39

𝑤 = 𝚺−1 𝜇1 − 𝜇2
when 𝑝 𝑥|𝐶𝑖 ~𝒩 𝜇𝑖 , 𝚺

Normal distribution
with mean 𝜇𝑖 and

covariance matrix 𝚺

K>2 Classes

• Classes 𝐶1, … , 𝐶𝐾

• We want to map 𝑑-dimensrional space into 𝑘-dimensional space
𝑧 = 𝐖T𝑥 𝐖 ∈ ℝ𝑑×𝑘 , 𝑧 ∈ ℝ𝑘

• Total within-class scatter matrix:

𝐒𝑊 =

𝑖=1

𝐾

𝐒𝑖 𝐒𝑖 =

𝑡

𝑟𝑡
𝑖
𝑥𝑡 −𝑚𝑖 𝑥𝑡 −𝑚𝑖

T

• Between-class scatter matrix:

𝐒𝐵 =

𝑖=1

𝐾

𝑁𝑖 𝑚𝑖 −𝑚 𝑚𝑖 −𝑚 T 𝑚 =
1

𝐾

𝑖=1

𝐾

𝑚𝑖 𝑁𝑖 =

𝑖=1

𝑁

𝑟𝑡
𝑖

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
40

𝑟𝑡
𝑖
= ቊ

1 if 𝑥𝑡 ∈ 𝐶𝑖
0 if 𝑥𝑡 ∉ 𝐶𝑖

Within-class scatter
matrix for 𝐶𝑖

• The between-class and within-class scatter matrices after projection
are

𝐖T𝐒𝐵𝐖 and 𝐖T𝐒𝑊𝐖

• Find 𝐖 that maximalizes

𝐽 𝐖 =
𝐖T𝐒𝐵𝐖

𝐖T𝐒𝑊𝐖

• The solution are the largest eigenvectors of 𝐒𝑊
−1𝐒𝐵

𝐒𝐵 =

𝑖=1

𝐾

𝑁𝑖 𝑚𝑖 −𝑚 𝑚𝑖 −𝑚 T

is a sum of 𝐾 matrices of rank 1, only 𝐾 − 1 of them are
independent, therefore we take 𝑘 = 𝐾 − 1

K>2 Classes

41Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Linear Discriminant
Analysis

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
42

Optidigits plotted into
the first two
dimensions found by
linear discriminant
analysis

Note that the classes
are better separated
than in the case of
PCA

Isomap

• Geodesic distance is the distance along the manifold that the data
lies in, as opposed to the Euclidean distance in the input space

43Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Isomap

• Instances 𝑟 and 𝑠 are connected in the graph if 𝑥𝑟 − 𝑥𝑠 < 𝜀 or if 𝑥𝑠
is one of the 𝑘 neighbors of 𝑥𝑟. The edge length is 𝑥𝑟 − 𝑥𝑠

• For two nodes 𝑟 and 𝑠 not connected, the distance is equal to the
shortest path between them

• Once the 𝑁 × 𝑁 distance matrix is thus formed, use MDS to find a

lower-dimensional mapping

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
44

Isomap – Example

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
45

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Optdigits after Isomap (with neighborhood graph).

0

0

7

4

6

2

5
5

0
8

7
1

9 5

3

0

4

7

84

7

8
5

9

1

2

0

6

1

8

7

0

7

6

9

1

9
3

9
4

9

2

1

9
9

6

4
3

2

8

2

7

1

4

6

2

0

4

6

3
7 1

0

2

2

5

2

4

8
1

7
3

0

3 3
77

9

1
3

3

4

3

4

2

88
9 8

4

7
1

6

9

4

0

1 3

6

2

Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html

Locally Linear Embedding

1. Given 𝑥𝑟 find its neighbors 𝑥𝑠
𝑟
, 𝑠 = 1,… , 𝑆

2. Find 𝐖𝑟×𝑠 that minimize error in the original space

E 𝐖 ∣ 𝑋 =

𝑟

𝑥𝑟 −

𝑠

𝐖𝑟𝑠𝑥𝑠
𝑟

2

using least squares, subject to

𝐖𝑟𝑟 = 0,

𝑠

𝐖𝑟𝑠 = 1, ∀𝑟

3. Find the new coordinates 𝑧𝑟 that minimize

𝐸(𝑧 ∣ 𝐖) =

𝑟

𝑧𝑟 −

𝑠

𝐖𝑟𝑠𝑧𝑠
(𝑟)

2

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
46

Locally Linear Embedding

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
47

rx

()r
sx rz

()r
sz

Locally Linear Embedding
on Optdigits

Lecture Notes for E Alpaydın 2010
Introduction to Machine Learning 2e © The

MIT Press (V1.0)
48

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
1

1

1

1

1

1

00

7

4

6

2

5

5

0

8

7

1

9

5

3

0

47

84

7

8

5

9
1

2

0

6

1
8

7

0

76

9
1

9

3

9

4

9

2

1

99

6

43
2

8
2

7

14

6

2

0

4
6

3

7

1

0

22 52

48

1

7

3

0

3
3

77

9
1

3
34

34
2

8
8

9
8 4

7

1

6 9
4

0

1

3
6

2

Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html

