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Learning for Analysis of 
Biological Data

• Example: A mass spectrometry experiment on a set of plants

• Generates many thousands of metabolites (intermediates and products 
of metabolism; the term metabolite is usually restricted to small molecules
<= 900 daltons (1 dalton = weight of a nucleon (neutron or proton)))

• Each metabolite can be represented by mass and abundance values for 
replicates

• Based on masses it is possible to infer a number of chemical formulas of 
candidate compounds from different pathways

• One metabolite can be mapped to multiple compounds

• Supervised  learning

• Find a mapping from one data space to another data space

Chemical formulas → pathways

• Unsupervised learning

• One data space is missing – reorganize the data space to explore the 
missing data space
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Why Unsupervised 
Learning

Example: Analysis of gene expression

• It is possible to monitor simultaneously thousands of genes and 
proteins under different experimental conditions – for studying 
genome- and proteome-wide functions and regulatory mechanisms

• Dimensionality reduction – to reduce the dimensionality of the 
‘gene space’ (e.g. in microarray data) by constructing ‘super-genes’ –
for simplifying structure of the data

• Visualizations – reduce the data to 2 or 3 dimensions (e.g. 
principal components analysis)

• Clustering – partitioning the data into groups of objects more 
‘similar’ to each other than objects in different groups – identifying 
biologically relevant groups of both genes and samples and have also 
provided insight into gene function and regulation
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Subjects of Unsupervised 
Learning

1. Density estimation
• Find information hidden in the data

• E.g. the data can be generated from a normal distribution (i.e. 𝑥𝑖 is a 
real value) and we can find the parameters of the Gaussian (mean and 
standard deviation)

𝜇 =
1

𝑁


𝑖=1

𝑁

𝑥𝑖 𝜎 =
1

𝑁 − 1


𝑖=1

𝑁

𝑥𝑖 − 𝜇 2

where 𝑥1, 𝑥2, … , 𝑥𝑁 are the data points, 𝑁 ≥ 1
• Gaussian distribution is regarded as data structure and parameters are 

regarded as inference rules

• Usually methods from statistics

2. Data visualization

3. Cluster analysis
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Subjects of Unsupervised 
Learning

1. Density estimation

2. Data visualization

• Often many dimensional data 
is not possible to visualize

• E.g. gene expression data for a 
disease may contain only a few 
samples, but with 
1000100000 genes as 
variables

3. Cluster analysis
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Mapping four dimensional Iris data to a 2-
dimensional space. Setosa is well 
separated from the other two species, 
which are difficult to separate.



Subjects of Unsupervised 
Learning

1. Density estimation

2. Data visualization

3. Cluster analysis

• A data set may be viewed as a composition of disjointed sub-data 
structures

• Each sub-structure contains data points with similar properties

• How to find these sub-structures and quantitatively describe them?
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PROBABILITY DENSITY ESTIMATION 
APPROACHES

Part 2: Unsupervised learning
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Probability Density 
Estimation Approaches

1. The histogram approach – the simplest method

2. A parametric approach – assumes a structure in data (e.g. normal 
distribution); training data not kept

3. Non-parametric approaches – no explicit data structure

4. Semi-parametric approach
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𝑛𝑖 = #data points in bin 𝑖
𝑝𝑖 = probability a point         

falls in bin 𝑖

How to approximate the 
probability density 
function?

1. Histogram Approach

• Each coordinate is divided into segments of a fixed 
length (called bins)

• If 𝑥 ∈ 𝑎, 𝑏 , the interval is divided into 𝐾 bins of 
length 

∆=
𝑏 − 𝑎

𝐾

• Each training data point is assigned to the bin it 
belongs

• Frequency of each bin is

#training data falling into the bin

#all training data

• The frequency is used as the probability how likely a 
point falls into the bin – simple visualization is a 
histogram  
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1. Histogram Approach
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1. Histogram Approach

• Pros: 

• Simple method, no explicit data structure is supposed

• No need to fit a model to the data

• We just compute some very simple statistics (the number of data points 
in each bin) and store them

• Cons: 

• How wide should the bins be? (width=regularizer)

• Do we want the same bin-width everywhere?

• Do we believe the density is zero for empty bins? 

• for 𝑑 variables we need 𝐾𝑑 bins; e.g. for 𝐾 = 10 and 𝑑 = 10 require 
1010 bins 

• The density has discontinuities at the bin boundaries

• We must be able to do better by some kind of smoothing
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1. Histogram Approach

• Cons (cont.): 

• Positions of bin boundaries can change the outcome; see the example 
from the documentation for scikit-learn

• On the left: bin boundaries linspace(-5,10,10)

• On the right: bin boundaries linspace(-4.25,10.75,10)
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• Assumes a data structure before estimating the probability

• After constructing the density probability function, the training data are 
discarded

• If we assume a Gaussian data structure
• A training set of size 𝑁 is 𝐗 = 𝑥𝑖 𝑖=1

𝑁 , 𝑥𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑑
𝑇 ∈ ℝ𝑑 , (i.e. 𝑥𝑖 is a 

column vector)         

• The training data points are generated by the assumed Gaussian data 
structure with likelihood ℒ

ℒ =ෑ

𝑖=1

𝑁

𝑝 𝑥𝑖 where 𝑝 𝑥𝑖 =
1

2𝜋 𝑑 𝚺
𝑒−

𝑥𝑖−𝜇
𝑇𝚺−1 𝑥𝑖−𝜇
2

where 𝚺 ∈ ℝ𝑑×𝑑 is the covariance matrix (see below), 𝚺−1 is its inverse and 
𝚺 its determinant, 𝜇 ∈ ℝ𝑑 is the mean vector

• The likelihood function is maximized

2. Parametric Approach
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1D Gaussian probability 
density function

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒
−

𝑥−𝜇 2

2𝜎2



2. Parametric Approach

• The covariance matrix 𝚺 = E 𝑥 − 𝜇 𝑥 − 𝜇 𝑇 for 𝑥 ∈ 𝐗, i.e. 

𝚺𝑖𝑗 = 𝑐𝑜𝑣 𝐱𝑖 , 𝐱𝑗 = E 𝐱𝑖 − 𝜇𝑖
𝑇 𝐱𝑗 − 𝜇𝑗

• If the training data are orthogonal, the covariance matrix becomes 
diagonal

𝚺 =

𝜎1
2 0

0 𝜎2
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜎𝑑

2

• If the data are homogenous (i.e. 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑑 = 𝜎)

• 𝚺 = 𝜎2𝐈 where 𝐈 is the identity matrix

• 𝜇 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖 and   𝜎2 =

1

𝑁𝑑
σ𝑖=1
𝑁 𝑥𝑖 − 𝜇 𝑇 𝑥𝑖 − 𝜇
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𝑥, 𝜇 are a column vectors



2. Parametric Approach

• Parametric distribution models are restricted to specific forms, which 
may not always be suitable; for example, consider modelling a 
multimodal distribution with a single, unimodal model.
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3. Non-Parametric 
Approach

• Building a model without clearly defined structure

• For a prediction all (training) data are needed

• Local density estimators  estimate the density in a small region

𝑝 𝑥 =
𝐾

𝑁𝑉

where 𝐾 is the number of points  in the region, 𝑉 is the volume of 
the region, 𝑁 is the total number of points

• Two common methods

A. Kernel approach 

B. 𝐾-nearest neighbour approach
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d dimensional

3A. Kernel Density 
Estimators

• Use regions centered on the data points

• Allow regions to overlap

• Each region contributes by 1/𝑁 to the total density

• Avoiding discontinuities by using regions with soft edges
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𝑝 𝑥 =
1

𝑁


𝑛=1

𝑁
1

(2𝜋ℎ2)𝑑/2
exp −

𝑥 − 𝑥𝑛
2

2ℎ2

is too narrow

is too wide

1D Gaussian probability 
density function

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒
−

𝑥−𝜇 2

2𝜎2

ෑ

𝑖=1

𝑁

𝑝 𝑥𝑖 where 𝑝 𝑥𝑖 =
1

2𝜋 𝑑 𝚺
𝑒−

𝑥𝑖−𝜇
𝑇𝚺−1 𝑥𝑖−𝜇
2



3B. K-Nearest Neighbor Approach for 
Density Estimation

• Similarly to the histogram approach

• Vary the size of a hyper-sphere around each test point so that exactly 
𝐾 training data points fall inside the hyper-sphere.

• fix 𝐾, estimate 𝑉 from the data. Consider a hyper-sphere centred on 𝑥
and let it grow to a volume 𝑉∗, that includes 𝐾 of the given 𝑁 data 
points

𝑝 𝑥 =
𝐾

𝑁𝑉∗

• Does this give a fair estimate of the density?

• Nearest neighbors is usually used for classification or regression:

• For regression, average the predictions of the 𝐾-nearest neighbors.

• For classification, pick the class with the most votes.
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3B. K-Nearest Neighbour Approach 
for Density Estimation
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𝐾 acts as a smoother.



4. Semi-Parametric 
Approach

• We assume that data are generated from a model with 𝑀 Gaussians

• Estimated density

𝑓 𝑥 = 

𝑚=1

𝑀

𝑤𝑚𝐺𝑚 𝑥

where 𝑤𝑚 , 0 ≤ 𝑤𝑚 ≤ 1 is the contribution of the m-th component



𝑚=1

𝑀

𝑤𝑚 = 1

• 𝐺𝑚(𝑥) is the 𝑚-th component Gaussian 

𝐺𝑚 𝑥 =
1

2𝜋 𝑑 𝚺𝑚
𝑒−

𝑥𝑖−𝜇
𝑇𝚺𝑚

−1 𝑥𝑖−𝜇
2

• For fitting of such mixture model, the Expectation-Maximization (EM) 
algorithm is used [EM-algorithm is not presented here]
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DIMENSIONALITY REDUCTION

Part 2: Unsupervised learning
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• Reduces time complexity: Less computation

• Reduces space complexity: Less parameters

• Saves the cost of observing the feature

• Simpler models are more robust on small datasets

• Better interpretable; simpler explanation

• Data visualization (structure, groups, outliers, etc.) if plotted in 2 or 3 dimensions

➢ A (one-to-one) mapping 𝜙 of the set of data points 𝒟 = 𝑥𝑛 ∈ ℝ𝑑
𝑛=1
𝑁 where 𝑁 is 

the number of data points, 𝑑 ≥ 2 is their dimension, to ෩𝒟 = 𝑦𝑛 ∈ ℝ
෨𝑑
𝑛=1

𝑁
and, 

where ሚ𝑑 ≤ 2 is the new dimension; 
𝜙 𝑥𝑛 = 𝑦𝑛, ∀𝑛 ∈ 1, . . . , 𝑁

➢ If 𝑥𝑚 is the nearest neighbor of xn ∈ 𝒟, we expect that 
𝑦𝑚 − 𝑦𝑛 ≤ 𝑦𝑖 − 𝑦𝑛 , ∀𝑖 ∈ 1, . . . , 𝑁

Why 
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Feature Selection vs 
Extraction

• Feature selection: 

• Choosing 𝑘 < 𝑑 important features, ignoring the remaining 𝑑 − 𝑘

• Subset selection algorithms

• Feature extraction (feature derivation):

• Project the original 𝐱𝑖 , 𝑖 = 1, … , 𝑑 dimensions to new 𝑘 < 𝑑 dimensions, 
𝐳𝑗 , 𝑗 = 1, … , 𝑘

• Algorithms: 

• Principal components analysis (PCA)

• Linear discriminant analysis (LDA)

• Factor analysis (FA)

• Multidimensional scaling (MDS)
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Subset Selection

• There are 2𝑑 subsets of 𝑑 features

1. Forward search: 
• “Add the best feature at each step”

• Set of features 𝐹 initially 

• At each iteration, find the best new feature

𝑗 = argmin
𝑖

𝐸𝑟𝑟𝑜𝑟(𝐹 ∪ 𝐱𝑖)

• Add 𝐱𝑖 to 𝐹 if 𝐸𝑟𝑟𝑜𝑟(𝐹 ∪ 𝐱𝑖) < 𝐸𝑟𝑟𝑜𝑟 𝐹

• Hill-climbing 𝑂(𝑑2) algorithm

2. Backward search: Start with all features and remove one (which 
causes the least error) at a time

3. Floating search:
• Set the set of selected features 𝐹 ∶= 

• Set the set of possible features 𝑃 to the set of all features

• Alternate adding 𝑘 features to 𝐹 and removing 𝑙 features from 𝑃
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𝐗 = 𝐱1, 𝐱2, … , 𝐱𝑑 =

𝑥1
𝑇

𝑥2
𝑇

⋮
𝑥𝑁
𝑇

=

𝑥11 𝑥12
𝑥21 𝑥22

… 𝑥1𝑑
… 𝑥2𝑑

⋮ ⋮
𝑥𝑁1 𝑥𝑁2

⋱ ⋮
… 𝑥𝑁𝑑



• Find a low-dimensional space such that when 𝑥 is projected there, 

information loss is minimized.

• The projection of 𝑥 on the direction (a column vector) 𝑤1 is: 

𝑧 = 𝑤1
T𝑥

• Find 𝑤1 such that Var(𝑧) is maximized

Var 𝑧 = Var 𝑤1
T𝑥 = E 𝑤1

T𝑥 − E 𝑤1
T𝑥

2
= E 𝑤1

T𝑥 − 𝑤1
T𝜇

2
=

= E 𝑤1
T𝑥 − 𝑤1

T𝜇 𝑤1
T𝑥 − 𝑤1

T𝜇 = 𝐸 𝑤1
T x − 𝜇 𝑥 − 𝜇 T 𝑤1

= 𝑤1
TE 𝑥 − 𝜇 𝑥 − 𝜇 T 𝑤1 = 𝑤1

T𝚺𝑤1

where Var 𝑥 = E 𝑥 − 𝜇 𝑥 − 𝜇 T = 𝚺 is the correlation matrix

Principal Components 
Analysis (PCA)
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Principal Components 
Analysis (PCA)

• Find a transformation matrix

𝐖 = 𝑤1 ⋯ 𝑤𝑘

we will use for a transformation
𝑧 = 𝐖𝑇 𝑥 − 𝜇
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• Without constraint we could pick a very big 𝑤1. 

• Maximize Var(𝑧) subject to 𝑤1 = 1 using Lagrange multiplier 
method

max
𝑤1

𝑤1
T𝚺𝑤1 − 𝛼 𝑤1

T𝑤1 − 1

• The derivative with respect to 𝑤1 (all partial derivatives according to 
constituents of 𝑤1) should be 0

2𝚺𝑤1 − 2𝛼𝑤1 = 0

• Hence 𝚺𝑤1 = 𝛼𝑤1 that is, 𝑤1 is an eigenvector of 𝚺

• We want to maximize Var 𝑧 = 𝑤1
T𝚺𝑤1 = 𝛼𝑤1

T𝑤1 = 𝛼 ⟹ choose the 
eigen vector with the largest eigenvalue

• Second principal component: maxVar 𝑧2 , s.t. 𝑤2 = 1 and 𝑤2 is
orthogonal to 𝑤1

max
w2

𝑤2
T𝚺𝑤2 − 𝛼 𝑤2

T𝑤2 − 1 − 𝛽 𝑤2
T𝑤1 − 0

Principal Components 
Analysis (PCA)
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Principal Components 
Analysis (PCA)

• Second principal component: maxVar 𝑧2 , s.t. 𝑤2 = 1 and 𝑤2 is
orthogonal to 𝑤1

max
w2

𝑤2
T𝚺𝑤2 − 𝛼 𝑤2

T𝑤2 − 1 − 𝛽 𝑤2
T𝑤1 − 0

• The derivative with respect to 𝑤2 should be 0

(*) 2𝚺𝑤2 − 2𝛼𝑤2 − 𝛽𝑤1 = 0

• Pre-multiply by 𝑤1
2𝑤1

T𝚺𝑤2 − 2𝛼𝑤1
T𝑤2 − 𝛽𝑤1

T𝑤1 = 0

2𝑤1
T𝚺𝑤2 − 𝛽 = 0

• 𝑤1
T𝑤2 = 0, 𝑤1

𝑇𝚺𝑤2 is a scalar and equals to the transpose 𝑤2
𝑇𝚺𝑤1

2𝑤1
𝑇𝚺𝑤2 = 𝑤2

𝑇𝚺𝑤1 = 𝜆1𝑤2
𝑇𝑤1 = 0

• Then 𝛽 = 0 and from (*) we have 𝚺𝑤2 = 𝛼𝑤2 and 𝑤2 should be an 
eigenvector of 𝚺

• Similarly for 𝑤3, 𝑤4, …
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What PCA Does?

𝑧 = 𝐖T (𝑥 – 𝜇)

where the columns of 𝑾 are the eigenvectors of 𝚺, and 𝜇 is the 
sample mean

Centers the data at the origin and rotates the axes
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How to Choose the Number 
of Principal Components?

• Proportion of Variance 
(𝑃𝑜𝑉 ) explained, when 𝜆i 

are sorted in descending 
order 

• Typically, stop at 𝑃𝑜𝑉 > 0.9

• Scree graph plots of 𝑃𝑜𝑉 vs 
𝑘, stop at “elbow”
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SK: Sutinový graf

𝜆1 + 𝜆2 +⋯+ 𝜆𝑘
𝜆1 + 𝜆2 +⋯+ 𝜆𝑘⋯+ 𝜆𝑑



PCA on Optidigits
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Optidigits plotted into 
the first two 
dimensions found by 
PCA 



Factor Analysis

• Find a small number of factors 𝐳 ∈ ℝ𝑁, which when combined 
generate 𝐱:

𝐱𝑖 − 𝜇𝑖 = 𝑣𝑖1𝐳1 + 𝑣𝑖2𝐳2 +⋯+ 𝑣𝑖𝑘𝐳𝑘 + 𝛆𝑖

where 𝐳𝑗 , 𝑗 = 1, … , 𝑘 (𝑘 < 𝑑) are the latent factors with 

E 𝐳𝑗 = 0, Var 𝐳𝑗 = 1, Cov 𝐳𝑖 , 𝐳𝑗 = 0, 𝑖 ≠ 𝑗,

𝛆𝑖 are the noise sources 

E 𝛆𝑖 = 𝜓𝑖; Cov 𝛆i, 𝛆𝑗 = 0, 𝑖 ≠ 𝑗; Cov 𝛆𝑖 , 𝐳𝑗 = 0, ∀𝑖, 𝑗

and 𝑣𝑖𝑗 are the factor loadings, 𝐕 = 𝑣𝑖𝑗 𝑑×𝑘
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PCA vs FA

How to transform a vector 𝑥 into new vector 𝑧?

• FA From 𝑧 to 𝑥 𝑥 − 𝜇 = 𝐕𝑧 + 𝜀

• PCA From 𝑥 to 𝑧 𝑧 = 𝐖T 𝑥 − 𝜇
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𝑧1

𝑧2

𝑧𝑘

⋮

𝑥1

𝑥3

𝑥𝑑

⋮

𝑧1

𝑧2

𝑧𝑘

⋮

𝑥2
𝑣

FA

𝑤

PCA

variables new
variables

factors



Factor Analysis

• In FA, factors 𝑧𝑗 are stretched, rotated and translated to generate 𝑥
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Multidimensional 
Scaling

• Given pairwise distances between N points

𝑑𝑖,𝑗
∗ = 𝑥𝑖 − 𝑥𝑗 𝑖, 𝑗 = 1,… , 𝑁

place the points on a low-dim map s.t. distances are preserved.

• 𝑧 = 𝑔 𝑥 𝜃

1. Classical MDS: 𝑧 = 𝑔 𝑥 𝜃 = 𝐖T𝑥, i.e. 𝜃 = 𝐖

2. In general: find 𝜃 that minimizes Sammon stress

E 𝜃|X =
1

σ𝑖<𝑗 𝑑𝑖,𝑗
∗ 

𝑖=1

𝑁



𝑗=𝑖+1

𝑁
𝑑𝑖,𝑗
∗ − 𝑧𝑖 − 𝑧𝑗

2

𝑑𝑖,𝑗
∗

E 𝜃|X is minimized using gradient descent methods or some other 

iterative method
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ഥ𝑚1

ഥ𝑚2

Linear Discriminant
Analysis

• a supervised method for dimensionality 

reduction (it is almost classification)

• Find a low-dimensional space such that 

when x is projected, classes are well-separated. 

• Find 𝑤 that maximizes

𝐽 𝑤 =
𝑚1−𝑚2

2

𝑠1
2+𝑠2

2

• We are given a sample 𝑋 = 𝑥𝑡, 𝑟𝑡 𝑡=1
𝑁 such that
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𝑟𝑡 = ቊ
1 if 𝑥𝑡 ∈ 𝐶1
0 if 𝑥𝑡 ∈ 𝐶2

𝑚1 = 𝑤T ഥ𝑚1 =
σ𝑡𝑤

T𝑥𝑡𝑟𝑡

σ𝑡 𝑟𝑡
𝑠1
2 = σ𝑡 w

T𝑥𝑡 −𝑚1
2
𝑟𝑡

𝑚2 = 𝑤T ഥ𝑚2 =
σ𝑡𝑤

T𝑥𝑡 1−𝑟𝑡

σ𝑡(1−𝑟𝑡)
𝑠2
2 = σ𝑡 𝑤

T𝑥𝑡 −𝑚2
2
(1 − 𝑟𝑡)



Linear Discriminant
Analysis

• Between-class scatter:
𝑚1 −𝑚2

2 = 𝑤T ഥ𝑚1 − 𝑤T ഥ𝑚2
2

= 𝑤T ഥ𝑚1 − ഥ𝑚2 ഥ𝑚1 − ഥ𝑚2
T𝑤

= 𝑤T𝐒𝐵𝑤 where 𝐒𝐵 = ഥ𝑚1 − ഥ𝑚2 ഥ𝑚1 − ഥ𝑚2
T

• Within-class scatter:
𝑠1
2 =

𝑡

𝑤T𝑥𝑡 −𝑚1
2
𝑟𝑡

=

𝑡

𝑤T 𝑥𝑡 − ഥ𝑚1 𝑥𝑡 − ഥ𝑚1
T𝑤𝑟𝑡 = 𝑤T𝐒1𝑤

where 𝐒1 =

𝑡

𝑥𝑡 − ഥ𝑚1 𝑥𝑡 − ഥ𝑚1
T𝑟𝑡 for 𝐒2 analogically

𝑠1
2 + 𝑠2

2 = 𝑤T𝐒𝑊𝑤 where 𝐒𝑊 = 𝐒𝟏 + 𝐒2
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• Find 𝑤 that max

𝐽 𝑤 =
𝑤𝑇𝐒𝐵𝑤

𝑤T𝐒𝑊𝑤
=

𝑤T ഥ𝑚1 − ഥ𝑚2
2

𝑤T𝐒𝑊𝑤

• LDA solution (the derivative of 𝐽(𝑤) must be zero):

𝑤 = 𝑐 ⋅ 𝐒𝑊
−1 ഥ𝑚1 − ഥ𝑚2 for some constant 𝑐

we can take c = 1

• Parametric solution:

• Moreover, this solution can be used also when the classes are not normal

Fisher’s Linear 
Discriminant
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𝑤 = 𝚺−1 𝜇1 − 𝜇2
when 𝑝 𝑥|𝐶𝑖 ~𝒩 𝜇𝑖 , 𝚺

Normal distribution 
with mean 𝜇𝑖 and 

covariance matrix 𝚺



K>2 Classes

• Classes 𝐶1, … , 𝐶𝐾

• We want to map 𝑑-dimensrional space into 𝑘-dimensional space
𝑧 = 𝐖T𝑥 𝐖 ∈ ℝ𝑑×𝑘 , 𝑧 ∈ ℝ𝑘

• Total within-class scatter matrix: 

𝐒𝑊 =

𝑖=1

𝐾

𝐒𝑖 𝐒𝑖 =

𝑡

𝑟𝑡
𝑖
𝑥𝑡 −𝑚𝑖 𝑥𝑡 −𝑚𝑖

T

• Between-class scatter matrix:

𝐒𝐵 =

𝑖=1

𝐾

𝑁𝑖 𝑚𝑖 −𝑚 𝑚𝑖 −𝑚 T 𝑚 =
1

𝐾


𝑖=1

𝐾

𝑚𝑖 𝑁𝑖 =

𝑖=1

𝑁

𝑟𝑡
𝑖
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𝑟𝑡
𝑖
= ቊ

1 if 𝑥𝑡 ∈ 𝐶𝑖
0 if 𝑥𝑡 ∉ 𝐶𝑖

Within-class scatter 
matrix  for 𝐶𝑖



• The between-class and within-class scatter matrices after projection 
are

𝐖T𝐒𝐵𝐖 and    𝐖T𝐒𝑊𝐖

• Find 𝐖 that maximalizes

𝐽 𝐖 =
𝐖T𝐒𝐵𝐖

𝐖T𝐒𝑊𝐖

• The solution are the largest eigenvectors of 𝐒𝑊
−1𝐒𝐵

𝐒𝐵 =

𝑖=1

𝐾

𝑁𝑖 𝑚𝑖 −𝑚 𝑚𝑖 −𝑚 T

is a sum of 𝐾 matrices of rank 1, only 𝐾 − 1 of them are 
independent, therefore we take 𝑘 = 𝐾 − 1

K>2 Classes
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Linear Discriminant
Analysis
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Optidigits plotted into 
the first two 
dimensions found by 
linear discriminant 
analysis

Note that the classes 
are better separated 
than in the case of 
PCA 



Isomap

• Geodesic distance is the distance along the manifold that the data 
lies in, as opposed to the Euclidean distance in the input space
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Isomap 

• Instances 𝑟 and 𝑠 are connected in the graph if 𝑥𝑟 − 𝑥𝑠 < 𝜀 or if 𝑥𝑠
is one of the 𝑘 neighbors of 𝑥𝑟. The edge length is 𝑥𝑟 − 𝑥𝑠

• For two nodes 𝑟 and 𝑠 not connected, the distance is equal to the 
shortest path between them

• Once the 𝑁 × 𝑁 distance matrix is thus formed, use MDS to find a 

lower-dimensional mapping

Lecture Notes for E Alpaydın 2010 
Introduction to Machine Learning 2e © The 

MIT Press (V1.0)
44



Isomap – Example

Lecture Notes for E Alpaydın 2010 
Introduction to Machine Learning 2e © The 

MIT Press (V1.0)
45

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Optdigits after Isomap (with neighborhood graph).
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Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html



Locally Linear Embedding

1. Given 𝑥𝑟 find its neighbors 𝑥𝑠
𝑟
, 𝑠 = 1,… , 𝑆

2. Find 𝐖𝑟×𝑠 that minimize error in the original space

E 𝐖 ∣ 𝑋 =

𝑟

𝑥𝑟 −

𝑠

𝐖𝑟𝑠𝑥𝑠
𝑟

2

using least squares, subject to 

𝐖𝑟𝑟 = 0, 

𝑠

𝐖𝑟𝑠 = 1, ∀𝑟

3. Find the new coordinates 𝑧𝑟 that minimize

𝐸(𝑧 ∣ 𝐖) =

𝑟

𝑧𝑟 −

𝑠

𝐖𝑟𝑠𝑧𝑠
(𝑟)

2
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Locally Linear Embedding
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Locally Linear Embedding
on Optdigits
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Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html


