MACHINE LEARNING IN BIOINFORMATICS

Part 2: Unsupervised learning

František Mráz KSVI MFF UK

fppt.com

- Yang, Zheng Rong. *Machine learning approaches to bioinformatics*. Science, Engineering, and Biology Informatics — Vol. 4. World scientific, 2010.
- Bishop, Christopher M. *Pattern recognition and machine learning*. Vol. 4. No. 4. New York: Springer, 2006.

Learning for Analysis of Biological Data

- **Example:** A mass spectrometry experiment on a set of plants
 - Generates many thousands of <u>metabolites</u> (intermediates and products of metabolism; the term *metabolite* is usually restricted to <u>small molecules</u>
 <= 900 daltons (1 dalton = weight of a nucleon (neutron or proton)))
 - Each metabolite can be represented by mass and abundance values for replicates
 - Based on masses it is possible to infer a number of chemical formulas of candidate compounds from different pathways
 - One metabolite can be mapped to multiple compounds

Supervised learning

Find a mapping from one data space to another data space
 Chemical formulas → *pathways*

Unsupervised learning

 One data space is missing – reorganize the data space to explore the missing data space

Why Unsupervised Learning

Example: Analysis of gene expression

- It is possible to monitor simultaneously thousands of genes and proteins under different experimental conditions – for studying genome- and proteome-wide functions and regulatory mechanisms
- Dimensionality reduction to reduce the dimensionality of the 'gene space' (e.g. in microarray data) by constructing 'super-genes' – for simplifying structure of the data
- **Visualizations** reduce the data to 2 or 3 dimensions (e.g. principal components analysis)
- Clustering partitioning the data into groups of objects more 'similar' to each other than objects in different groups – identifying biologically relevant groups of both genes and samples and have also provided insight into gene function and regulation

Subjects of Unsupervised Learning

1. Density estimation

- Find information hidden in the data
- E.g. the data can be generated from a normal distribution (i.e. *x_i* is a real value) and we can find the parameters of the Gaussian (mean and standard deviation)

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2}$$

where $x_1, x_2, ..., x_N$ are the data points, $N \ge 1$

- Gaussian distribution is regarded as data structure and parameters are regarded as inference rules
- Usually methods from statistics

2. Data visualization

3. Cluster analysis

Subjects of Unsupervised Learning

1. Density estimation

2. Data visualization

- Often many dimensional data is not possible to visualize
- E.g. gene expression data for a disease may contain only a few samples, but with 1000≈100000 genes as variables

3. Cluster analysis

Mapping four dimensional Iris data to a 2dimensional space. Setosa is well separated from the other two species, which are difficult to separate.

Subjects of Unsupervised Learning

- 1. Density estimation
- 2. Data visualization
- 3. Cluster analysis
 - A data set may be viewed as a composition of disjointed sub-data structures
 - Each sub-structure contains data points with similar properties
 - How to find these sub-structures and quantitatively describe them?

Part 2: Unsupervised learning PROBABILITY DENSITY ESTIMATION APPROACHES

Probability Density Estimation Approaches

- 1. The histogram approach the simplest method
- 2. A parametric approach assumes a structure in data (e.g. normal distribution); training data not kept
- 3. Non-parametric approaches no explicit data structure
- 4. Semi-parametric approach

- Each coordinate is divided into segments of a fixed length (called bins)
- If $x \in [a, b]$, the interval is divided into *K* bins of length

$$\Delta = \frac{b-a}{K}$$

- Each training data point is assigned to the bin it belongs
- Frequency of each bin is

#training data falling into the bin #all training data

 The frequency is used as the probability how likely a point falls into the bin – simple visualization is a histogram Histogram

 $n_i =$ #data points in bin i $p_i =$ probability a point falls in bin i

$$p_i = \frac{n_i}{N}$$

How to approximate the probability density function?

$$f_i = \frac{n_i}{N\Delta}$$

- Pros:
 - Simple method, no explicit data structure is supposed
 - No need to fit a model to the data
 - We just compute some very simple statistics (the number of data points in each bin) and store them
- Cons:
 - How wide should the bins be? (width=regularizer)
 - Do we want the same bin-width everywhere?
 - Do we believe the density is zero for empty bins?
 - for *d* variables we need K^d bins; e.g. for K = 10 and d = 10 require 10^{10} bins
 - The density has discontinuities at the bin boundaries
 - We must be able to do better by some kind of smoothing

- Cons (cont.):
 - Positions of bin boundaries can change the outcome; see the example from the documentation for scikit-learn
 - On the left: bin boundaries linspace(-5,10,10)
 - On the right: bin boundaries linspace(-4.25,10.75,10)

2. Parametric Approach

- Assumes a data structure before estimating the probability
- After constructing the density probability function, the training data are discarded
- If we assume a Gaussian data structure
 - A training set of size N is $\mathbf{X} = \{x_i\}_{i=1}^N, x_i = (x_{i1}, ..., x_{id})^T \in \mathbb{R}^d$, (i.e. x_i is a column vector)
 - The training data points are generated by the assumed Gaussian data structure with likelihood \mathcal{L}

density function
$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}}$$

$$\mathcal{L} = \prod_{i=1}^{N} p(x_i) \quad \text{where} \quad p(x_i) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} e^{-\frac{(x_i - \mu)^T \mathbf{\Sigma}^{-1} (x_i - \mu)}{2}}$$

where $\Sigma \in \mathbb{R}^{d \times d}$ is the covariance matrix (see below), Σ^{-1} is its inverse and $|\Sigma|$ its determinant, $\mu \in \mathbb{R}^d$ is the mean vector

• The likelihood function is maximized

 $(x-\mu)^2$

2. Parametric Approach

 x, μ are a column vectors

- The covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[(x \mu)(x \mu)^T]$ for $x \in \mathbf{X}$, i.e. $\boldsymbol{\Sigma}_{ij} = cov(\mathbf{x}_i, \mathbf{x}_j) = \mathbb{E}[(\mathbf{x}_i - \mu_i)^T(\mathbf{x}_j - \mu_j)]$
- If the training data are orthogonal, the covariance matrix becomes diagonal

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{pmatrix}$$

- If the data are homogenous (i.e. $\sigma_1 = \sigma_2 = \cdots = \sigma_d = \sigma$)
 - $\Sigma = \sigma^2 I$ where I is the identity matrix

•
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $\sigma^2 = \frac{1}{Nd} \sum_{i=1}^{N} (x_i - \mu)^T (x_i - \mu)$

2. Parametric Approach

• Parametric distribution models are restricted to specific forms, which may not always be suitable; for example, consider modelling a multimodal distribution with a single, unimodal model.

3. Non-Parametric Approach

- Building a model without clearly defined structure
- For a prediction all (training) data are needed
- Local density estimators \approx estimate the density in a small region

$$p(x) = \frac{K}{NV}$$

where *K* is the number of points in the region, *V* is the volume of the region, *N* is the total number of points

- Two common methods
 - A. Kernel approach
 - B. *K*-nearest neighbour approach

3A. Kernel Density Estimators

- Use regions centered on the data points
 - Allow regions to overlap
 - Each region contributes by 1/N to the total density
 - Avoiding discontinuities by using regions with soft edges

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{d/2}} \exp\left(-\frac{\|x - x_n\|^2}{2h^2}\right)$$

1D Gaussian probability $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
d dimensional

$$\prod_{i=1}^{N} p(x_i) \text{ where } p(x_i) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} e^{-\frac{(x_i - \mu)^T \mathbf{\Sigma}^{-1}(x_i - \mu)}{2}}$$

Machine Learning in Bioinformatics

3B. *K*-Nearest Neighbor Approach for Density Estimation

- Vary the size of a hyper-sphere around each test point so that exactly *K* training data points fall inside the hyper-sphere.
 - fix K, estimate V from the data. Consider a hyper-sphere centred on x and let it grow to a volume V*, that includes K of the given N data points

$$p(x) = \frac{K}{NV^*}$$

- Does this give a fair estimate of the density?
- Nearest neighbors is usually used for classification or regression:
 - For regression, average the predictions of the *K*-nearest neighbors.
 - For classification, pick the class with the most votes.

3B. *K*-Nearest Neighbour Approach for Density Estimation

4. Semi-Parametric Approach

• We assume that data are generated from a model with *M* Gaussians

.

• Estimated density

$$f(x) = \sum_{m=1}^{M} w_m G_m(x)$$

where w_m , $0 \le w_m \le 1$ is the contribution of the *m*-th component

$$\sum_{m=1} w_m = 1$$

• $G_m(x)$ is the *m*-th component Gaussian

$$G_m(x) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}_m|}} e^{-\frac{(x_i - \mu)^T \mathbf{\Sigma}_m^{-1}(x_i - \mu)}{2}}$$

 For fitting of such mixture model, the Expectation-Maximization (EM) algorithm is used [EM-algorithm is not presented here]

Part 2: Unsupervised learning **DIMENSIONALITY REDUCTION**

Why

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- Better interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc.) if plotted in 2 or 3 dimensions
- ➤ A (one-to-one) mapping ϕ of the set of data points $\mathcal{D} = \{x_n \in \mathbb{R}^d\}_{n=1}^N$ where *N* is the number of data points, $d \ge 2$ is their dimension, to $\widetilde{\mathcal{D}} = \{y_n \in \mathbb{R}^{\tilde{d}}\}_{n=1}^N$ and, where $\tilde{d} \le 2$ is the new dimension;

$$\phi(x_n) = y_n, \qquad \forall n \in \{1, \dots, N\}$$

➤ If x_m is the nearest neighbor of $x_n \in D$, we expect that $||y_m - y_n|| \le ||y_i - y_n||, \quad \forall i \in \{1, ..., N\}$

March 7, 2019

Machine Learning in Bioinformatics

23

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning ${\mathbb G}$ The MIT Press (V1.1)

Feature Selection vs Extraction

• Feature selection:

- Choosing k < d important features, ignoring the remaining d k
- Subset selection algorithms

• Feature extraction (feature derivation):

- Project the original x_i, i = 1, ..., d dimensions to new k < d dimensions, z_j, j = 1, ..., k
- Algorithms:
 - Principal components analysis (PCA)
 - Linear discriminant analysis (LDA)
 - Factor analysis (FA)
 - Multidimensional scaling (MDS)

fppt.com

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Subset Selection

• There are 2^d subsets of d features

1. Forward search:

- "Add the best feature at each step"
 - Set of features F initially \varnothing
 - At each iteration, find the best new feature

 $j = \operatorname{argmin} Error(F \cup \mathbf{x}_i)$

- Add \mathbf{x}_i to F if $Error(F \cup \mathbf{x}_i) < Error(F)$
- Hill-climbing $O(d^2)$ algorithm
- 2. Backward search: Start with all features and remove one (which causes the least error) at a time

3. Floating search:

- Set the set of selected features $F := \emptyset$
- Set the set of possible features *P* to the set of all features
- Alternate adding k features to F and removing l features from P

$$\mathbf{X} = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d}) = \begin{pmatrix} x_{1}^{T} \\ x_{2}^{T} \\ \vdots \\ x_{N}^{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1d} \\ x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{Nd} \end{pmatrix}$$

- Find a low-dimensional space such that when *x* is projected there, information loss is minimized.
- The projection of x on the direction (a column vector) w_1 is:

• Find
$$w_1$$
 such that $Var(z)$ is maximized

$$Var(z) = Var(w_1^T x) = E\left[\left(w_1^T x - E[w_1^T x]\right)^2\right] = E\left[\left(w_1^T x - w_1^T \mu\right)^2\right] = E\left[\left(w_1^T x - w_1^T \mu\right)\left(w_1^T x - w_1^T \mu\right)\right] = E\left[w_1^T (x - \mu)(x - \mu)^T w_1\right] = w_1^T E\left[(x - \mu)(x - \mu)^T\right] = w_1^T \Sigma w_1$$

 $z = w_1^{\mathrm{T}} x$

where $Var(x) = E[(x - \mu)(x - \mu)^T] = \Sigma$ is the correlation matrix

 $\mathbf{E}[x] = \mu$

• Find a transformation matrix

$$\mathbf{W} = \begin{bmatrix} \begin{pmatrix} w_1 \end{pmatrix} & \cdots & \begin{pmatrix} w_k \end{pmatrix} \end{bmatrix}$$

we will use for a transformation
$$z = \mathbf{W}^T (x - \mu)$$

- Without constraint we could pick a very big w_1 .
- Maximize Var(z) subject to $||w_1|| = 1$ using Lagrange multiplier method

$$\max_{w_1} w_1^{\mathrm{T}} \boldsymbol{\Sigma} w_1 - \alpha \left(w_1^{\mathrm{T}} w_1 - 1 \right)$$

• The derivative with respect to w_1 (all partial derivatives according to constituents of w_1) should be 0

$$2\Sigma w_1 - 2\alpha w_1 = 0$$

- Hence $\Sigma w_1 = \alpha w_1$ that is, w_1 is an eigenvector of Σ
- We want to maximize $Var(z) = w_1^T \Sigma w_1 = \alpha w_1^T w_1 = \alpha \implies$ choose the eigen vector with the largest eigenvalue
- Second principal component: $\max \operatorname{Var}(z_2)$, s.t. $||w_2|| = 1$ and w_2 is orthogonal to w_1

$$\max_{w_2} w_2^{\mathrm{T}} \boldsymbol{\Sigma} w_2 - \alpha (w_2^{\mathrm{T}} w_2 - 1) - \beta (w_2^{\mathrm{T}} w_1 - 0)$$

• Second principal component: $\max \operatorname{Var}(z_2)$, s.t. $||w_2|| = 1$ and w_2 is orthogonal to w_1

$$\max_{w_2}^{T} w_2^{T} \Sigma w_2 - \alpha (w_2^{T} w_2 - 1) - \beta (w_2^{T} w_1 - 0)$$

• The derivative with respect to w_2 should be 0

$$(*) \qquad 2\Sigma w_2 - 2\alpha w_2 - \beta w_1 = 0$$

- Pre-multiply by w_1 $2w_1^{\mathrm{T}} \Sigma w_2 - 2\alpha w_1^{\mathrm{T}} w_2 - \beta w_1^{\mathrm{T}} w_1 = 0$ $2w_1^{\mathrm{T}} \Sigma w_2 - \beta = 0$
- $w_1^T w_2 = 0, w_1^T \Sigma w_2$ is a scalar and equals to the transpose $w_2^T \Sigma w_1$ $2w_1^T \Sigma w_2 = w_2^T \Sigma w_1 = \lambda_1 w_2^T w_1 = 0$
- Then $\beta = 0$ and from (*) we have $\Sigma w_2 = \alpha w_2$ and w_2 should be an eigenvector of Σ
- Similarly for w_3, w_4, \dots

29

What PCA Does?

$$z = \mathbf{W}^{\mathrm{T}}(x - \mu)$$

where the columns of W are the eigenvectors of Σ , and μ is the sample mean

Centers the data at the origin and rotates the axes

How to Choose the Number of Principal Components?

- Proportion of Variance (*PoV*) explained, when λ_i are sorted in descending order
- Typically, stop at *PoV* > 0.9
- Scree graph plots of *PoV* vs *k*, stop at "elbow"

PCA on Optidigits

Optidigits plotted into the first two dimensions found by PCA

fppt.com

Factor Analysis

• Find a small number of factors $z \in \mathbb{R}^N$, which when combined generate x:

 $\mathbf{x}_{i} - \mu_{i} = v_{i1}\mathbf{z}_{1} + v_{i2}\mathbf{z}_{2} + \dots + v_{ik}\mathbf{z}_{k} + \boldsymbol{\varepsilon}_{i}$ where $\mathbf{z}_{j}, j = 1, \dots, k$ (k < d) are the latent factors with $\mathbf{E}[\mathbf{z}_{j}] = 0$, $\operatorname{Var}(\mathbf{z}_{j}) = 1$, $\operatorname{Cov}(\mathbf{z}_{i}, \mathbf{z}_{j}) = 0$, $i \neq j$, $\boldsymbol{\varepsilon}_{i}$ are the noise sources

 $E[\mathbf{\epsilon}_i] = \psi_i; \operatorname{Cov}(\mathbf{\epsilon}_i, \mathbf{\epsilon}_j) = 0, i \neq j; \operatorname{Cov}(\mathbf{\epsilon}_i, \mathbf{z}_j) = 0, \forall i, j$ and v_{ij} are the factor loadings, $\mathbf{V} = (v_{ij})_{d \times k}$

PCA vs FA

How to transform a vector x into new vector z?

- FA From *z* to *x*
- PCA From *x* to *z*

$$x - \mu = \mathbf{V}z + \varepsilon$$
$$z = \mathbf{W}^{\mathrm{T}}(x - \mu)$$

Factor Analysis

• In FA, factors z_i are stretched, rotated and translated to generate x

Multidimensional Scaling

• Given pairwise distances between N points

$$d_{i,j}^* = ||x_i - x_j||$$
 $i, j = 1, ..., N$

place the points on a low-dim map s.t. distances are preserved.

•
$$z = g(x \mid \theta)$$

1. Classical MDS: $z = g(x \mid \theta) = \mathbf{W}^{T}x$, i.e. $\theta = \mathbf{W}$

2. In general: find θ that minimizes Sammon stress

$$E[\theta|X] = \frac{1}{\sum_{i < j} d_{i,j}^*} \sum_{i=1}^N \sum_{j=i+1}^N \frac{\left(d_{i,j}^* - \|z_i - z_j\|\right)^2}{d_{i,j}^*}$$

 $\mathrm{E}[\boldsymbol{\theta}|\mathbf{X}]$ is minimized using gradient descent methods or some other iterative method

Linear Discriminant Analysis

- a **supervised** method for dimensionality reduction (it is almost classification)
- Find a low-dimensional space such that when *x* is projected, classes are well-separated.
- Find *w* that maximizes

$$J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

• We are given a sample $X = \{(x_t, r_t)\}_{t=1}^N$ such that

$$r_{t} = \begin{cases} 1 & \text{if } x_{t} \in C_{1} \\ 0 & \text{if } x_{t} \in C_{2} \end{cases} \qquad m_{1} = w^{\mathrm{T}} \overline{m}_{1} = \frac{\sum_{t} w^{\mathrm{T}} x_{t} r_{t}}{\sum_{t} r_{t}} \qquad s_{1}^{2} = \sum_{t} \left(w^{\mathrm{T}} x_{t} - m_{1} \right)^{2} r_{t} \\ m_{2} = w^{\mathrm{T}} \overline{m}_{2} = \frac{\sum_{t} w^{\mathrm{T}} x_{t} (1 - r_{t})}{\sum_{t} (1 - r_{t})} \qquad s_{2}^{2} = \sum_{t} \left(w^{\mathrm{T}} x_{t} - m_{2} \right)^{2} (1 - r_{t})$$

22

Machine Learning in Bioinformatics

 x_1

Linear Discriminant Analysis

• Between-class scatter: $(m_1 - m_2)^2 = (w^T \overline{m}_1 - w^T \overline{m}_2)^2$ $= w^T (\overline{m}_1 - \overline{m}_2) (\overline{m}_1 - \overline{m}_2)^T w$ $= w^T \mathbf{S}_B w \text{ where } \mathbf{S}_B = (\overline{m}_1 - \overline{m}_2) (\overline{m}_1 - \overline{m}_2)^T$

Within-class scatter:

$$s_1^2 = \sum_t (w^T x_t - m_1)^2 r_t$$

$$= \sum_t w^T (x_t - \overline{m}_1) (x_t - \overline{m}_1)^T w r_t = w^T \mathbf{S}_1 w$$
where $\mathbf{S}_1 = \sum_t (x_t - \overline{m}_1) (x_t - \overline{m}_1)^T r_t$ for \mathbf{S}_2 analogically
$$s_1^2 + s_2^2 = w^T \mathbf{S}_W w$$
 where $\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2$

Fisher's Linear Discriminant

• Find w that max

$$J(w) = \frac{w^{\mathrm{T}} \mathbf{S}_{B} w}{w^{\mathrm{T}} \mathbf{S}_{W} w} = \frac{\left| w^{\mathrm{T}} (\overline{m}_{1} - \overline{m}_{2}) \right|^{2}}{w^{\mathrm{T}} \mathbf{S}_{W} w}$$

• LDA solution (the derivative of J(w) must be zero): $w = c \cdot \mathbf{S}_{W}^{-1}(\overline{m}_{1} - \overline{m}_{2})$ for some constant c

we can take c = 1

• Parametric solution:

$$w = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2)$$

when $p(x|C_i) \sim \mathcal{N}(\mu_i, \mathbf{\Sigma})$

Normal distribution with mean μ_i and covariance matrix Σ

• Moreover, this solution can be used also when the classes are not normal

K>2 Classes

- Classes C_1, \dots, C_K $r_t^{(i)} = \begin{cases} 1 & \text{if } x_t \in C_i \\ 0 & \text{if } x_t \notin C_i \end{cases}$
- We want to map *d*-dimensional space into *k*-dimensional space $z = \mathbf{W}^T x$ $\mathbf{W} \in \mathbb{R}^{d \times k}, z \in \mathbb{R}^k$
- Total within-class scatter matrix: $\mathbf{S}_{W} = \sum_{i=1}^{K} \mathbf{S}_{i} \quad \mathbf{S}_{i} = \sum_{t} r_{t}^{(i)} (x_{t} - m_{i}) (x_{t} - m_{i})^{\mathrm{T}}$ Within-class scatter matrix for C_{i}
- Between-class scatter matrix:

$$\mathbf{S}_{B} = \sum_{i=1}^{K} N_{i} (m_{i} - m) (m_{i} - m)^{\mathrm{T}} \quad m = \frac{1}{K} \sum_{i=1}^{K} m_{i} \quad N_{i} = \sum_{i=1}^{N} r_{t}^{(i)}$$

17

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) λT

K>2 Classes

The between-class and within-class scatter matrices after projection are

$$\mathbf{W}^{\mathrm{T}}\mathbf{S}_{B}\mathbf{W}$$
 and $\mathbf{W}^{\mathrm{T}}\mathbf{S}_{W}\mathbf{W}$

• Find W that maximalizes

$$J(\mathbf{W}) = \frac{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{B}\mathbf{W}|}{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{W}\mathbf{W}|}$$

• The solution are the largest eigenvectors of $S_W^{-1}S_B$

$$\mathbf{S}_B = \sum_{i=1}^{K} N_i (m_i - m) (m_i - m)^{\mathrm{T}}$$

is a sum of *K* matrices of rank 1, only K - 1 of them are independent, therefore we take k = K - 1

Linear Discriminant Analysis

Optidigits plotted into the first two dimensions found by linear discriminant analysis

Note that the classes are better separated than in the case of PCA

Isomap

• Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Isomap

- Instances *r* and *s* are connected in the graph if $||x_r x_s|| < \varepsilon$ or if x_s is one of the *k* neighbors of x_r . The edge length is $||x_r x_s||$
- For two nodes *r* and *s* not connected, the distance is equal to the shortest path between them
- Once the $N \times N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping

Isomap – Example

MIT Press (V1.0)

fppt.com

Locally Linear Embedding

- 1. Given x_r find its neighbors $x_s^{(r)}$, s = 1, ..., S
- 2. Find $\mathbf{W}_{r \times s}$ that minimize error in the original space

$$E(\mathbf{W} \mid X) = \sum_{r} \left\| x_r - \sum_{s} \mathbf{W}_{rs} x_s^{(r)} \right\|^2$$

using least squares, subject to

$$\mathbf{W}_{rr} = 0, \qquad \sum_{s} \mathbf{W}_{rs} = 1, \qquad \forall r$$

3. Find the new coordinates z_r that minimize

$$E(z \mid \mathbf{W}) = \sum_{r} \left\| z_{r} - \sum_{s} \mathbf{W}_{rs} z_{s}^{(r)} \right\|^{2}$$

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Locally Linear Embedding

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Locally Linear Embedding on Optdigits

Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)