MACHINE LEARNING IN BIOINFORMATICS

Part 2: Unsupervised learning

František Mráz KSVI MFF UK

Sources

- Yang, Zheng Rong. Machine learning approaches to bioinformatics. Science, Engineering, and Biology Informatics - Vol. 4. World scientific, 2010.
- Bishop, Christopher M. Pattern recognition and machine learning. Vol. 4. No. 4. New York: Springer, 2006.

Learning for Analysis of Biological Data

- Example: A mass spectrometry experiment on a set of plants
- Generates many thousands of metabolites (intermediates and products of metabolism; the term metabolite is usually restricted to small molecules <= 900 daltons (1 dalton = weight of a nucleon (neutron or proton)))
- Each metabolite can be represented by mass and abundance values for replicates
- Based on masses it is possible to infer a number of chemical formulas of candidate compounds from different pathways
- One metabolite can be mapped to multiple compounds
- Supervised learning
- Find a mapping from one data space to another data space Chemical formulas \rightarrow pathways
- Unsupervised learning
- One data space is missing - reorganize the data space to explore the missing data space

Why Unsupervised Learning

Example: Analysis of gene expression

- It is possible to monitor simultaneously thousands of genes and proteins under different experimental conditions - for studying genome- and proteome-wide functions and regulatory mechanisms
- Dimensionality reduction - to reduce the dimensionality of the 'gene space' (e.g. in microarray data) by constructing 'super-genes' for simplifying structure of the data
- Visualizations - reduce the data to 2 or 3 dimensions (e.g. principal components analysis)
- Clustering - partitioning the data into groups of objects more 'similar' to each other than objects in different groups - identifying biologically relevant groups of both genes and samples and have also provided insight into gene function and regulation

Subjects of Unsupervised Learning

1. Density estimation

- Find information hidden in the data
- E.g. the data can be generated from a normal distribution (i.e. x_{i} is a real value) and we can find the parameters of the Gaussian (mean and standard deviation)

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i} \quad \sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

where $x_{1}, x_{2}, \ldots, x_{N}$ are the data points, $N \geq 1$

- Gaussian distribution is regarded as data structure and parameters are regarded as inference rules
- Usually methods from statistics

2. Data visualization

3. Cluster analysis

Subjects of Unsupervised Learning

1. Density estimation

2. Data visualization

- Often many dimensional data is not possible to visualize
- E.g. gene expression data for a disease may contain only a few samples, but with $1000 \approx 100000$ genes as variables

3. Cluster analysis

Mapping four dimensional Iris data to a 2dimensional space. Setosa is well separated from the other two species, which are difficult to separate.

Subjects of Unsupervised Learning

1. Density estimation

2. Data visualization
3. Cluster analysis

- A data set may be viewed as a composition of disjointed sub-data structures
- Each sub-structure contains data points with similar properties
- How to find these sub-structures and quantitatively describe them?

Part 2: Unsupervised learning PROBABILITY DENSITY ESTIMATION APPROACHES

Probability Density Estimation Approaches

1. The histogram approach - the simplest method
2. A parametric approach - assumes a structure in data (e.g. normal distribution); training data not kept
3. Non-parametric approaches - no explicit data structure
4. Semi-parametric approach

1. Histogram Approach

- Each coordinate is divided into segments of a fixed length (called bins)
- If $x \in[a, b]$, the interval is divided into K bins of length

$$
\Delta=\frac{b-a}{K}
$$

- Each training data point is assigned to the bin it
- Frequency of each bin is
\#training data falling into the bin \#all training data
- The frequency is used as the probability how likely a point falls into the bin - simple visualization is a histogram

belongs

1. Histogram Approach

1. Histogram Approach

- Pros:
- Simple method, no explicit data structure is supposed
- No need to fit a model to the data
- We just compute some very simple statistics (the number of data points in each bin) and store them
- Cons:
- How wide should the bins be? (width=regularizer)
- Do we want the same bin-width everywhere?
- Do we believe the density is zero for empty bins?
- for d variables we need K^{d} bins; e.g. for $K=10$ and $d=10$ require 10^{10} bins
- The density has discontinuities at the bin boundaries
- We must be able to do better by some kind of smoothing

1. Histogram Approach

- Cons (cont.):
- Positions of bin boundaries can change the outcome; see the example from the documentation for scikit-learn
- On the left: bin boundaries 7 inspace $(-5,10,10)$
- On the right: bin boundaries 7 i inspace $(-4.25,10.75,10)$

2. Parametric Approach

- Assumes a data structure before estimating the probability
- After constructing the density probability function, the training data are discarded
- If we assume a Gaussian data structure
- A training set of size N is $\mathbf{X}=\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)^{T} \in \mathbb{R}^{d}$, (i.e. x_{i} is a column vector)
- The training data points are generated by the assumed Gaussian data structure with likelihood \mathcal{L}

$$
\begin{aligned}
& \text { 1D Gaussian probability } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \text { density function }
\end{aligned}
$$

$$
\mathcal{L}=\prod_{i=1}^{N} p\left(x_{i}\right) \text { where } p\left(x_{i}\right)=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} e^{-\frac{\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)}{2}}
$$

where $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$ is the covariance matrix (see below), $\boldsymbol{\Sigma}^{-1}$ is its inverse and $|\Sigma|$ its determinant, $\mu \in \mathbb{R}^{d}$ is the mean vector

- The likelihood function is maximized

2. Parametric Approach

- The covariance matrix $\boldsymbol{\Sigma}=\mathrm{E}\left[(x-\mu)(x-\mu)^{T}\right]$ for $x \in \mathbf{X}$, i.e.

$$
\boldsymbol{\Sigma}_{i j}=\operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathrm{E}\left[\left(\mathbf{x}_{i}-\mu_{i}\right)^{T}\left(\mathbf{x}_{j}-\mu_{j}\right)\right]
$$

- If the training data are orthogonal, the covariance matrix becomes diagonal

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{d}^{2}
\end{array}\right)
$$

- If the data are homogenous (i.e. $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{d}=\sigma$)
- $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ where \mathbf{I} is the identity matrix
- $\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ and $\sigma^{2}=\frac{1}{N d} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{T}\left(x_{i}-\mu\right)$

2. Parametric Approach

- Parametric distribution models are restricted to specific forms, which may not always be suitable; for example, consider modelling a multimodal distribution with a single, unimodal model.

3. Non-Parametric Approach

- Building a model without clearly defined structure
- For a prediction all (training) data are needed
- Local density estimators \approx estimate the density in a small region

$$
p(x)=\frac{K}{N V}
$$

where K is the number of points in the region, V is the volume of the region, N is the total number of points

- Two common methods
A. Kernel approach
B. K-nearest neighbour approach

3A. Kernel Density Estimators

- Use regions centered on the data points
- Allow regions to overlap
- Each region contributes by $1 / N$ to the total density
- Avoiding discontinuities by using regions with soft edges

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{\left(2 \pi h^{2}\right)^{d / 2}} \exp \left(-\frac{\left\|x-x_{n}\right\|^{2}}{2 h^{2}}\right)
$$

$$
\begin{aligned}
& \text { 1D Gaussian probability } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \text { density function }
\end{aligned}
$$

d dimensional

$\left(\prod_{i=1}^{N} p\left(x_{i}\right)\right.$ where $\left.p\left(x_{i}\right)=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} e^{-\frac{\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)}{2}}\right)$

3B. K-Nearest Neighbor Approach for Density Estimation

- Similarly to the histogram approach
- Vary the size of a hyper-sphere around each test point so that exactly K training data points fall inside the hyper-sphere.
- fix K, estimate V from the data. Consider a hyper-sphere centred on x and let it grow to a volume V^{*}, that includes K of the given N data points

$$
p(x)=\frac{K}{N V^{*}}
$$

- Does this give a fair estimate of the density?
- Nearest neighbors is usually used for classification or regression:
- For regression, average the predictions of the K-nearest neighbors.
- For classification, pick the class with the most votes.

3B. K-Nearest Neighbour Approach for Density Estimation

4. Semi-Parametric Approach

- We assume that data are generated from a model with M Gaussians
- Estimated density

$$
f(x)=\sum_{m=1}^{M} w_{m} G_{m}(x)
$$

where $w_{m}, 0 \leq w_{m} \leq 1$ is the contribution of the m-th component

$$
\sum_{m=1}^{M} w_{m}=1
$$

- $G_{m}(x)$ is the m-th component Gaussian

$$
G_{m}(x)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{m}\right|}} e^{-\frac{\left(x_{i}-\mu\right)^{T} \Sigma_{m}^{-1}\left(x_{i}-\mu\right)}{2}}
$$

- For fitting of such mixture model, the Expectation-Maximization (EM) algorithm is used [EM-algorithm is not presented here]

Part 2: Unsupervised learning DIMENSIONALITY REDUCTION

Why

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- Better interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc.) if plotted in 2 or 3 dimensions
$>$ A (one-to-one) mapping ϕ of the set of data points $\mathcal{D}=\left\{x_{n} \in \mathbb{R}^{d}\right\}_{n=1}^{N}$ where N is the number of data points, $d \geq 2$ is their dimension, to $\widetilde{\mathcal{D}}=\left\{y_{n} \in \mathbb{R}^{\tilde{d}}\right\}_{n=1}^{N}$ and, where $\tilde{d} \leq 2$ is the new dimension;

$$
\phi\left(x_{n}\right)=y_{n}, \quad \forall n \in\{1, \ldots, N\}
$$

$>$ If x_{m} is the nearest neighbor of $\mathrm{x}_{\mathrm{n}} \in \mathcal{D}$, we expect that

$$
\left\|y_{m}-y_{n}\right\| \leq\left\|y_{i}-y_{n}\right\|, \quad \forall i \in\{1, \ldots, N\}
$$

Feature Selection vs Extraction

- Feature selection:
- Choosing $k<d$ important features, ignoring the remaining $d-k$
- Subset selection algorithms
- Feature extraction (feature derivation):
- Project the original $\mathbf{x}_{i}, i=1, \ldots, d$ dimensions to new $k<d$ dimensions, $\mathbf{z}_{j}, j=1, \ldots, k$
- Algorithms:
- Principal components analysis (PCA)
- Linear discriminant analysis (LDA)
- Factor analysis (FA)
- Multidimensional scaling (MDS)

Subset Selection

$$
\mathbf{X}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d}\right)=\left(\begin{array}{c}
x_{1}^{T} \\
x_{2}^{T} \\
\vdots \\
x_{N}^{T}
\end{array}\right)=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 d} \\
x_{21} & x_{22} & \ldots & x_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N 1} & x_{N 2} & \ldots & x_{N d}
\end{array}\right)
$$

- There are 2^{d} subsets of d features

1. Forward search:

- "Add the best feature at each step"
- Set of features F initially \varnothing
- At each iteration, find the best new feature

$$
j=\underset{i}{\operatorname{argmin}} \operatorname{Error}\left(F \cup \mathbf{x}_{i}\right)
$$

- Add \mathbf{x}_{i} to F if $\operatorname{Error}\left(F \cup \mathbf{x}_{i}\right)<\operatorname{Error}(F)$
- Hill-climbing $O\left(d^{2}\right)$ algorithm

2. Backward search: Start with all features and remove one (which causes the least error) at a time
3. Floating search:

- Set the set of selected features $F:=\varnothing$
- Set the set of possible features P to the set of all features
- Alternate adding k features to F and removing l features from P

Principal Components Analysis (PCA)

- Find a low-dimensional space such that when x is projected there, information loss is minimized.
- The projection of x on the direction (a column vector) w_{1} is:

$$
z=w_{1}^{\mathrm{T}} x
$$

- Find w_{1} such that $\operatorname{Var}(z)$ is maximized

$$
\mathrm{E}[x]=\mu
$$

$$
\begin{aligned}
\operatorname{Var}(z) & =\operatorname{Var}\left(w_{1}^{\mathrm{T}} x\right)=\mathrm{E}\left[\left(w_{1}^{\mathrm{T}} x-\mathrm{E}\left[w_{1}^{\mathrm{T}} x\right]\right)^{2}\right]=\mathrm{E}\left[\left(w_{1}^{\mathrm{T}} x-w_{1}^{\mathrm{T}} \mu\right)^{2}\right]= \\
& =\mathrm{E}\left[\left(w_{1}^{\mathrm{T}} x-w_{1}^{\mathrm{T}} \mu\right)\left(w_{1}^{\mathrm{T}} x-w_{1}^{\mathrm{T}} \mu\right)\right]=E\left[w_{1}^{\mathrm{T}}(\mathrm{x}-\mu)(x-\mu)^{\mathrm{T}} w_{1}\right] \\
& =w_{1}^{\mathrm{T}} \mathrm{E}\left[(x-\mu)(x-\mu)^{\mathrm{T}}\right] w_{1}=w_{1}^{\mathrm{T}} \boldsymbol{\Sigma} w_{1}
\end{aligned}
$$

where $\operatorname{Var}(x)=\mathrm{E}\left[(x-\mu)(x-\mu)^{\mathrm{T}}\right]=\boldsymbol{\Sigma}$ is the correlation matrix

Principal Components Analysis (PCA)

- Find a transformation matrix

$$
\mathbf{W}=\left[\begin{array}{lll}
\left(w_{1}\right) & \cdots & \left(w_{k}\right)
\end{array}\right]
$$

we will use for a transformation

$$
z=\mathbf{W}^{T}(x-\mu)
$$

Principal Components Analysis (PCA)

- Without constraint we could pick a very big w_{1}.
- Maximize $\operatorname{Var}(z)$ subject to $\left\|w_{1}\right\|=1$ using Lagrange multiplier method

$$
\max _{w_{1}} w_{1}^{\mathrm{T}} \boldsymbol{\Sigma} w_{1}-\alpha\left(w_{1}^{\mathrm{T}} w_{1}-1\right)
$$

- The derivative with respect to w_{1} (all partial derivatives according to constituents of w_{1}) should be 0

$$
2 \boldsymbol{\Sigma} w_{1}-2 \alpha w_{1}=0
$$

- Hence $\boldsymbol{\Sigma} w_{1}=\alpha w_{1}$ that is, w_{1} is an eigenvector of $\boldsymbol{\Sigma}$
- We want to maximize $\operatorname{Var}(z)=w_{1}^{\mathrm{T}} \boldsymbol{\Sigma} w_{1}=\alpha w_{1}^{\mathrm{T}} w_{1}=\alpha \Rightarrow$ choose the eigen vector with the largest eigenvalue
- Second principal component: $\max \operatorname{Var}\left(z_{2}\right)$, s.t. $\left\|w_{2}\right\|=1$ and w_{2} is orthogonal to w_{1}

$$
\max _{w_{2}} w_{2}^{\mathrm{T}} \boldsymbol{\Sigma} w_{2}-\alpha\left(w_{2}^{\mathrm{T}} w_{2}-1\right)-\beta\left(w_{2}^{\mathrm{T}} w_{1}-0\right)
$$

Principal Components Analysis (PCA)

- Second principal component: $\max \operatorname{Var}\left(z_{2}\right)$, s.t. $\left\|w_{2}\right\|=1$ and w_{2} is orthogonal to w_{1}

$$
\max _{w_{2}} w_{2}^{\mathrm{T}} \boldsymbol{\Sigma} w_{2}-\alpha\left(w_{2}^{\mathrm{T}} w_{2}-1\right)-\beta\left(w_{2}^{\mathrm{T}} w_{1}-0\right)
$$

- The derivative with respect to w_{2} should be 0

$$
\text { (*) } 2 \boldsymbol{\Sigma} w_{2}-2 \alpha w_{2}-\beta w_{1}=0
$$

- Pre-multiply by w_{1}

$$
\begin{aligned}
2 w_{1}^{\mathrm{T}} \boldsymbol{\Sigma} w_{2}-2 \alpha w_{1}^{\mathrm{T}} w_{2}-\beta w_{1}^{\mathrm{T}} w_{1} & =0 \\
2 w_{1}^{\mathrm{T}} \boldsymbol{\Sigma} w_{2}-\beta & =0
\end{aligned}
$$

- $w_{1}^{\mathrm{T}} w_{2}=0, w_{1}^{T} \boldsymbol{\Sigma} w_{2}$ is a scalar and equals to the transpose $w_{2}^{T} \boldsymbol{\Sigma} w_{1}$

$$
2 w_{1}^{T} \boldsymbol{\Sigma} w_{2}=w_{2}^{T} \boldsymbol{\Sigma} w_{1}=\lambda_{1} w_{2}^{T} w_{1}=0
$$

- Then $\beta=0$ and from (*) we have $\boldsymbol{\Sigma} w_{2}=\alpha w_{2}$ and w_{2} should be an eigenvector of $\boldsymbol{\Sigma}$
- Similarly for w_{3}, w_{4}, \ldots

What PCA Does?

$$
z=\mathbf{W}^{\mathrm{T}}(x-\mu)
$$

where the columns of \boldsymbol{W} are the eigenvectors of $\boldsymbol{\Sigma}$, and μ is the sample mean
Centers the data at the origin and rotates the axes

How to Choose the Number of Principal Components?

- Proportion of Variance (PoV) explained, when λ_{i} are sorted in descending order
- Typically, stop at PoV >0.9
- Scree graph plots of PoV vs k, stop at "elbow"

$$
\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k} \cdots+\lambda_{d}}
$$

(b) Proportion of variance explained

PCA on Optidigits

Machine Learning in Bioinformatics

Optidigits plotted into the first two dimensions found by PCA

Factor Analysis

- Find a small number of factors $\mathbf{z} \in \mathbb{R}^{N}$, which when combined generate \mathbf{x} :

$$
\mathbf{x}_{i}-\mu_{i}=v_{i 1} \mathbf{z}_{1}+v_{i 2} \mathbf{z}_{2}+\cdots+v_{i k} \mathbf{z}_{k}+\boldsymbol{\varepsilon}_{i}
$$

where $\mathbf{z}_{j}, j=1, \ldots, k(k<d)$ are the latent factors with

$$
\mathrm{E}\left[\mathbf{z}_{j}\right]=0, \quad \operatorname{Var}\left(\mathbf{z}_{j}\right)=1, \quad \operatorname{Cov}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)=0, \quad i \neq j
$$

$\boldsymbol{\varepsilon}_{i}$ are the noise sources

$$
\mathrm{E}\left[\boldsymbol{\varepsilon}_{i}\right]=\psi_{i} ; \operatorname{Cov}\left(\boldsymbol{\varepsilon}_{\mathrm{i}}, \boldsymbol{\varepsilon}_{j}\right)=0, \quad i \neq j ; \quad \operatorname{Cov}\left(\boldsymbol{\varepsilon}_{i}, \mathbf{z}_{j}\right)=0, \forall i, j
$$

and $v_{i j}$ are the factor loadings, $\mathbf{V}=\left(v_{i j}\right)_{d \times k}$

PCA vs FA

How to transform a vector x into new vector z ?

- FA
- PCA

Factor Analysis

- In FA, factors z_{j} are stretched, rotated and translated to generate x

Multidimensional Scaling

- Given pairwise distances between N points

$$
d_{i, j}^{*}=\left\|x_{i}-x_{j}\right\| \quad i, j=1, \ldots, N
$$

place the points on a low-dim map s.t. distances are preserved.

- $z=g(x \mid \theta)$

1. Classical MDS: $z=g(x \mid \theta)=\mathbf{W}^{\mathrm{T}} x$, i.e. $\theta=\mathbf{W}$
2. In general: find θ that minimizes Sammon stress

$$
\mathrm{E}[\theta \mid \mathrm{X}]=\frac{1}{\sum_{i<j} d_{i, j}^{*}} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{\left(d_{i, j}^{*}-\left\|z_{i}-z_{j}\right\|\right)^{2}}{d_{i, j}^{*}}
$$

$\mathrm{E}[\theta \mid \mathrm{X}]$ is minimized using gradient descent methods or some other iterative method

Linear Discriminant Analysis

- a supervised method for dimensionality reduction (it is almost classification)
- Find a low-dimensional space such that when x is projected, classes are well-separated.
- Find w that maximizes

$$
J(w)=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

- We are given a sample $X=\left\{\left(x_{t}, r_{t}\right)\right\}_{t=1}^{N}$ such that
$r_{t}=\left\{\begin{array}{lll}1 & \text { if } x_{t} \in C_{1} & m_{1}=w^{\mathrm{T}} \bar{m}_{1}=\frac{\sum_{t} w^{\mathrm{T}} x_{t} r_{t}}{\sum_{t} r_{t}}\end{array} \quad s_{1}^{2}=\sum_{t}\left(\mathrm{w}^{\mathrm{T}} x_{t}-m_{1}\right)^{2} r_{t}, ~\left(1-r_{t}\right)\right.$.

Linear Discriminant Analysis

- Between-class scatter:

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(w^{\mathrm{T}} \bar{m}_{1}-w^{\mathrm{T}} \bar{m}_{2}\right)^{2} \\
& =w^{\mathrm{T}}\left(\bar{m}_{1}-\bar{m}_{2}\right)\left(\bar{m}_{1}-\bar{m}_{2}\right)^{\mathrm{T}} w \\
& =w^{\mathrm{T}} \mathbf{S}_{B} w \text { where } \mathbf{S}_{B}=\left(\bar{m}_{1}-\bar{m}_{2}\right)\left(\bar{m}_{1}-\bar{m}_{2}\right)^{\mathrm{T}}
\end{aligned}
$$

- Within-class scatter:

$$
\begin{aligned}
\text { ass scatter: } \\
\qquad \begin{aligned}
s_{1}^{2} & =\sum_{t}\left(w^{\mathrm{T}} x_{t}-m_{1}\right)^{2} r_{t} \\
& =\sum_{t} w^{\mathrm{T}}\left(x_{t}-\bar{m}_{1}\right)\left(x_{t}-\bar{m}_{1}\right)^{\mathrm{T}} w r_{t}=w^{\mathrm{T}} \mathbf{S}_{1} w \\
\text { where } \mathbf{S}_{1} & =\sum_{t}\left(x_{t}-\bar{m}_{1}\right)\left(x_{t}-\bar{m}_{1}\right)^{\mathrm{T}} r_{t} \text { for } \mathbf{S}_{2} \text { analogically } \\
& s_{1}^{2}+s_{2}^{2}=w^{\mathrm{T}} \mathbf{S}_{W} w \text { where } \mathbf{S}_{W}=\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{2}
\end{aligned}
\end{aligned}
$$

Fisher's Linear Discriminant

- Find w that max

$$
J(w)=\frac{w^{T} \mathbf{S}_{B} w}{w^{\mathrm{T}} \mathbf{S}_{W} w}=\frac{\left|w^{\mathrm{T}}\left(\bar{m}_{1}-\bar{m}_{2}\right)\right|^{2}}{w^{\mathrm{T}} \mathbf{S}_{W} w}
$$

- LDA solution (the derivative of $J(w)$ must be zero):

$$
w=c \cdot \mathbf{S}_{W}^{-1}\left(\bar{m}_{1}-\bar{m}_{2}\right) \text { for some constant } c
$$

we can take $c=1$

- Parametric solution:

$$
\begin{aligned}
& w= \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& \quad \text { when } p\left(x \mid C_{i}\right) \sim \mathcal{N}\left(\mu_{i}, \widehat{\Sigma}\right)
\end{aligned}
$$

Normal distribution

 with mean μ_{i} and covariance matrix Σ- Moreover, this solution can be used also when the classes are not normal

K>2 Classes

- Classes $C_{1}, \ldots, C_{K} \quad r_{t}^{(i)}= \begin{cases}1 & \text { if } x_{t} \in C_{i} \\ 0 & \text { if } x_{t} \notin C_{i}\end{cases}$
- We want to map d-dimensrional space into k-dimensional space

$$
z=\mathbf{W}^{\mathrm{T}} x \quad \mathbf{W} \in \mathbb{R}^{d \times k}, z \in \mathbb{R}^{k}
$$

- Total within-class scatter matrix:

Within-class scatter
matrix for C_{i}

$$
\mathbf{S}_{W}=\sum_{i=1}^{K} \mathbf{S}_{i} \quad \mathbf{S}_{i}=\sum_{t} r_{t}^{(i)}\left(x_{t}-m_{i}\right)\left(x_{t}-m_{i}\right)^{\mathrm{T}}
$$

- Between-class scatter matrix:

$$
\mathbf{S}_{B}=\sum_{i=1}^{K} N_{i}\left(m_{i}-m\right)\left(m_{i}-m\right)^{\mathrm{T}} \quad m=\frac{1}{K} \sum_{i=1}^{K} m_{i} \quad N_{i}=\sum_{i=1}^{N} r_{t}^{(i)}
$$

K>2 Classes

- The between-class and within-class scatter matrices after projection are

$$
\mathbf{W}^{\mathrm{T}} \mathbf{S}_{B} \mathbf{W} \quad \text { and } \quad \mathbf{W}^{\mathrm{T}} \mathbf{S}_{W} \mathbf{W}
$$

- Find \mathbf{W} that maximalizes

$$
J(\mathbf{W})=\frac{\left|\mathbf{W}^{\mathrm{T}} \mathbf{S}_{B} \mathbf{W}\right|}{\left|\mathbf{W}^{\mathrm{T}} \mathbf{S}_{W} \mathbf{W}\right|}
$$

- The solution are the largest eigenvectors of $\mathbf{S}_{W}^{-1} \mathbf{S}_{B}$

$$
\mathbf{S}_{B}=\sum_{i=1}^{K} N_{i}\left(m_{i}-m\right)\left(m_{i}-m\right)^{\mathrm{T}}
$$

is a sum of K matrices of rank 1 , only $K-1$ of them are independent, therefore we take $k=K-1$

Linear Discriminant Analysis

> Optidigits plotted into the first two dimensions found by linear discriminant analysis

Note that the classes are better separated than in the case of PCA

Isomap

- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Isomap

- Instances r and s are connected in the graph if $\left\|x_{r}-x_{s}\right\|<\varepsilon$ or if x_{s} is one of the k neighbors of x_{r}. The edge length is $\left\|x_{r}-x_{s}\right\|$
- For two nodes r and s not connected, the distance is equal to the shortest path between them
- Once the $N \times N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping

Isomap - Example

Locally Linear Embedding

1. Given x_{r} find its neighbors $x_{s}^{(r)}, s=1, \ldots, S$
2. Find $\mathbf{W}_{r \times s}$ that minimize error in the original space

$$
\mathrm{E}(\mathbf{W} \mid X)=\sum_{r}\left\|x_{r}-\sum_{s} \mathbf{W}_{r s} x_{s}^{(r)}\right\|^{2}
$$

using least squares, subject to

$$
\mathbf{W}_{r r}=0, \quad \sum_{s} \mathbf{W}_{r s}=1, \quad \forall r
$$

3. Find the new coordinates z_{r} that minimize

$$
E(z \mid \mathbf{W})=\sum_{r}\left\|z_{r}-\sum_{s} \mathbf{W}_{r s} z_{s}^{(r)}\right\|^{2}
$$

Locally Linear Embedding

z_{2}

z space

Locally Linear Embedding on Optdigits

Matlab source from http://www.cs.toronto.edu/~roweis/Ile/code.html

