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Density Estimation

• We have already seen

1. Parametric: Assume a single model for 𝑝 𝑥 𝐶𝑖 (previous 

lecture)

2. Semiparametric: 𝑝 𝑥 𝐶𝑖 is a mixture of densities

Multiple possible explanations/prototypes:

Different handwriting styles, accents in speech

3. Nonparametric: No model; data speaks for itself (next lecture)

2Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)



Mixture Densities

𝑝 𝑥 =

𝑖=1

𝑘

𝑝(𝑥 ∣ 𝐺𝑖)𝑃(𝐺𝑖)

• where 𝐺𝑖 are the components/groups/clusters, 

𝑃(𝐺𝑖) mixture proportions (priors),

𝑝(𝑥 ∣ 𝐺𝑖) component densities

• Gaussian mixture where𝑝(𝑥 ∣ 𝐺𝑖)~N 𝜇𝑖 , 𝚺𝑖 where parameters Φ =

𝑃 𝐺𝑖 , 𝜇𝑖 , 𝚺𝑖 𝑖=1
𝑘 must be estimated from the unlabeled samples

(unsupervised learning) 𝑋 = 𝑥𝑡 𝑡=1
𝑁
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Classes vs. Clusters 

• Supervised: 𝑋 = 𝑥𝑡 , 𝑟𝑡 𝑡=1
𝑁

• Classes 𝐶𝑖 , 𝑖 = 1, … , 𝐾

𝑝 𝑥 =

𝑖=1

𝐾

𝑝 𝑥|𝐶𝑖 𝑃 𝐶𝑖

where

𝑝 𝑥|𝐶𝑖 ~𝒩 𝜇𝑖 , 𝚺𝑖

Φ = P 𝐶𝑖 , 𝜇𝑖 , 𝚺𝑖 𝑖=1
𝐾

• Unsupervised: 𝑋 = 𝑥𝑡 𝑡=1
𝑁

• Clusters 𝐺𝑖 , 𝑖 = 1, … , 𝑘

𝑝 𝑥 =

𝑖=1

𝐾

𝑝 𝑥|𝐺𝑖 𝑃 𝐺𝑖

where
𝑝 𝑥|𝐺𝑖 ~𝒩 𝜇𝑖 , 𝚺𝑖

Φ = P 𝐺𝑖 , 𝜇𝑖 , 𝚺𝑖 𝑖=1
𝐾

Labels, 𝑟𝑡
𝑖

?

4

𝑃 𝐶𝑖 =
σ𝑡 𝑟𝑡

(𝑖)

𝑁
𝑚𝑖 =

σ𝑡 𝑟𝑡
(𝑖)
𝑥𝑡

σ𝑡 𝑟𝑡
(𝑖)

S𝑖 =
σ𝑡 𝑟𝑡

(𝑖)
𝑥𝑡 −𝑚𝑖 𝑥𝑡 −𝑚𝑖

T

σ𝑡 𝑟𝑡
(𝑖)
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Sample covariance 
matrix

𝑟𝑡
𝑖
= ቊ

1 if 𝑥𝑡 ∈ 𝐶𝑖
0 if 𝑥𝑡 ∉ 𝐶𝑖



• Find 𝑘 reference vectors (prototypes / codebook vectors /

codewords) which best represent data

• Reference vectors, 𝑚𝑗 , 𝑗 = 1,… , 𝑘

• Use nearest (most similar) reference:

𝑥𝑡 −𝑚𝑖 = min
𝑗

𝑥𝑡 −𝑚𝑗

• Reconstruction error

𝐸 𝑚𝑖 𝑖=1
𝑘 𝐗 = 

𝑡



𝑖

𝑏𝑡
𝑖

𝑥𝑡 −𝑚𝑖

𝑏𝑡
𝑖
= ൝

1 if 𝑥𝑡 −𝑚𝑖 = min
𝑗

𝑥𝑡 −𝑚𝑗

0 otherwise

k-Means Clustering
(a nonparametric algorithm)
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Encoding/Decoding
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k-means Clustering

Initialize 𝑚𝑖 , 𝑖 = 1,… , 𝑘, for example to 𝑘 random 𝑥𝑡
Repeat

for all 

𝑥𝑡 ∈ 𝑥𝑡 𝑡=1
𝑁

𝑏𝑡
𝑖
= ൝

1 if 𝑥𝑡 −𝑚𝑖 = min
𝑗

𝑥𝑡 −𝑚𝑗

0 otherwise

for all 𝑚𝑖 , 𝑖 = 1,… , 𝑘

𝑚𝑖 ≔
σ𝑡 𝑏𝑡

𝑖
𝑥𝑡

σ𝑡 𝑏𝑡
𝑖

Until 𝑚𝑖 converge
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The k-Means Algorithm

• Assume the data lives in a 
Euclidean space.

• Assume we want 𝑘 classes.
• Assume we start with randomly 

located cluster centers

The algorithm alternates between 
two steps:

1. Assignment step: Assign 
each datapoint to the closest 
cluster.

2. Refitting step: Move each 
cluster center to the center of 
gravity of the data assigned 
to it.

Machine Learning in Bioinformatics 9March 7, 2019

Assignments

Refitted 
means



Why K-Means Converges 

• Whenever an assignment is changed, the sum squared distances of 
datapoints from their assigned cluster centers is reduced.

• Whenever a cluster center is moved the sum squared distances of 
the datapoints from their currently assigned cluster centers is 
reduced.

• Test for convergence: If the assignments do not change in the 
assignment step, we have converged.
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Local Minima

• There is nothing to prevent 𝑘-means getting stuck at local minima.

• We could try many random starting points

• We could try non-local split-and-merge moves: Simultaneously 
merge two nearby clusters and split a big cluster into two.

Machine Learning in Bioinformatics 11March 7, 2019

A bad local optimum



Soft 𝑘-Means

• Instead of making hard assignments of datapoints to clusters, we 
can make soft assignments. One cluster may have a responsibility of 
0.7 for a datapoint and another may have a responsibility of 0.3. 

• Allows a cluster to use more information about the data in the 
refitting step.

• What happens to our convergence guarantee?

• How do we decide on the soft assignments?

Machine Learning in Bioinformatics 12March 7, 2019



Expectation-Maximization 
(EM)

• In 𝑘-means we minimized the total reconstruction error; original data 

are 𝑋 = 𝑥𝑡 𝑖=1
𝑁

• Next we will we look for the component density parameters that 
maximize the likelihood of the sample

• Log likelihood with a mixture model ℒ Φ 𝑋 = logς𝑡 𝑝(𝑥𝑡|Φ) =

= σ𝑡 logσ𝑖=1
𝑘 𝑝 𝑥𝑡 Gi 𝑃(𝐺𝑖)

• Assume hidden variables 𝑍, which when known, make optimization 
much simpler

• Complete likelihood, ℒ𝑐(Φ |𝑋, 𝑍), in terms of 𝑋 and 𝑍

• Incomplete likelihood, L(Φ |X), in terms of 𝑋
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Parameter vector 
of the model



Iterate the two steps

1. E-step: Estimate 𝑍 given 𝑋 and current Φ

2. M-step: Find new Φ′ given 𝑍, 𝑋, and old Φ:

E-step: 𝒬 Φ Φ(𝑙) = 𝐸[ℒ𝑐(Φ|𝑋, 𝑍)|𝑋,Φ
𝑙 )]

M-step: Φ 𝑙+1 = argmax
Φ

𝒬(Φ|Φ 𝑙 )

An increase in Q (the expected likelihood) increases incomplete 

likelihood

ℒ Φ 𝑙+1 𝑋 ≥ ℒ(Φ 𝑙 |𝑋)

E- and M-steps
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• 𝑧𝑡
𝑖
= 1 if 𝑥𝑡 belongs to 𝐺𝑖, 0 otherwise (it corresponds to labels 𝑟𝑡

𝑖
of 

supervised learning); assume 𝑝(𝑥|𝐺𝑖)~𝒩(𝜇𝑖 , 𝚺𝑖 )
• E-step: 

𝐸 𝑧𝑡
𝑖
𝑋,Φ 𝑙 = 𝐸[𝑧𝑡

𝑖
|𝑥𝑡, Φ

𝑙 ]

= 𝑃 𝑧𝑡
𝑖
= 1 𝑥𝑡, Φ

𝑙

=
𝑝 𝑥𝑡 𝑧𝑡

𝑖
= 1,Φ 𝑙 𝑃(𝑧𝑡

𝑖
= 1|Φ 𝑙 )

𝑝(𝑥𝑡|Φ
𝑙 )

=
𝑝 𝑥𝑡 𝐺𝑖 , Φ

𝑙 𝑃(𝐺𝑖)

σ𝑗 𝑝 𝑥𝑡 𝐺𝑗 , Φ
𝑙 𝑃(𝐺𝑗)

= 𝑃 𝐺𝑖 𝑥𝑡 , Φ
𝑙 =: ℎ𝑡

𝑖

EM in Gaussian Mixtures
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Indicator variables

𝑥𝑡 are iid

𝑧𝑡
𝑖

is a 0/1 
random variable

Bayes’ rule

New notation



EM in Gaussian Mixtures

16

Use estimated labels in 
place of unknown labels
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• M-step:
Φ 𝑙+1 = argmax

Φ
𝒬 Φ Φ(𝑙) = argmax

Φ
𝐸[ℒ𝑐(Φ|𝑋, 𝑍)|𝑋,Φ

𝑙 )]

= argmax
Φ



𝑡



𝑖

𝐸 𝑧𝑡
𝑖
𝑋,Φ 𝑙 ⋅ [log 𝑃 𝐺𝑖 + log 𝑝(𝑥𝑡|𝐺𝑖 , Φ

𝑙 ]

= argmax
Φ



𝑡



𝑖

ℎ𝑡
𝑖
log 𝑃 𝐺𝑖 +

𝑡



𝑖

ℎ𝑡
𝑖
⋅ log 𝑝(𝑥𝑡|𝐺𝑖 , Φ

𝑖 )

• Solution using Lagrange multiplier method

𝑃 𝐺𝑖 =
σ𝑡 ℎ𝑡

𝑖

𝑁
𝑚𝑖

𝑙+1
=
σ𝑡 ℎ𝑡

𝑖
𝑥𝑡

σ𝑡 ℎ𝑡
𝑖

𝐒𝑡
𝑙+1

=
σ𝑡 ℎ𝑡

𝑖
𝑥𝑡 −𝑚𝑖

𝑙+1
𝑥𝑡 −𝑚𝑖

𝑙+1
𝑇

σ𝑡 ℎ𝑡
𝑖



EM in Gaussian Mixtures

• For Gaussian components in the E-step

ℎ𝑡
𝑖
=

𝑝 𝐺𝑖 𝐒𝑖
−
1
2 exp −

1
2

𝑥𝑡 −𝑚𝑖
𝑇𝐒𝑖

−1 𝑥𝑡 −𝑚𝑖

σ𝑗 𝑝 𝐺𝑗 𝐒𝑗
−
1
2 exp −

1
2

𝑥𝑡 −𝑚𝑗
𝑇
𝐒𝑖
−1 𝑥𝑡 −𝑚𝑗

• EM is initialized by 𝑘-means – it estimates 𝑚𝑖

• Then we estimate 𝐒𝑖 and compute 𝑝(𝐺𝑖) as 

σ𝑡 𝑏𝑡
𝑖

𝑁
• By making a few simplifying assumptions (the same diagonal 

covariance matrix for all clusters) we obtain that 𝑘-means clustering 

is a special case of EM applied to Gaussian mixtures where inputs 
are assumed independent with equal and shared variances, all 
components have equal priors, and labels are hardened

Machine Learning in Bioinformatics 17March 7, 2019



EM in Gaussian Mixtures

• 𝑘-means thus pave the input density with circles, whereas EM in the 

general case uses ellipses of arbitrary shapes, orientations, and 
coverage proportions

Machine Learning in Bioinformatics 18March 7, 2019
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𝑃(𝐺1|𝑥) = ℎ1 = 0.5
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• Using full covariance matrices with Gaussian mixtures, even if 
there is no singularity, can cause overfitting if the input 
dimensionality is high and the sample is small → regularize 
clusters to decrease the number of parameters:
– Assuming a common covariance matrix may not help as clusters 

may have different shapes.

– Assuming diagonal covariance matrices is even more risky because 
it removes all correlations.

– Use PCA/FA to decrease dimensionality: Mixtures of PCA/FA

𝑝 𝑥𝑡 𝐺𝑖 = 𝒩(𝑚𝑖 , 𝐕𝑖𝐕𝑖
𝑇 +𝚿𝑖)

Can use EM to learn V𝑖 (Ghahramani and Hinton, 1997; Tipping and 
Bishop, 1999)

Mixtures of Latent Variable 
Models
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Factor loadings of 𝐺𝑖 Specific variance of 𝐺𝑖



After Clustering

• Dimensionality reduction methods find correlations between 
features and group features

• Clustering methods find similarities between instances and group 
instances

• Clustering allows knowledge extraction through

number of clusters,

prior probabilities, 

cluster parameters, i.e., center, range of features.

• Example: customer relationship management (CRM)

• First clustering = customer segmentation

• Then different strategies for different types of customers
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Clustering as Preprocessing

• Estimated group labels ℎ 𝑗 (soft) or 𝑏 𝑗 (hard) may be seen as the 
dimensions of a new 𝑘-dimensional space, where we can then learn 

our discriminant or regressor.

• Local representation (only one 𝑏 𝑖 is 1, all others are 0; only few 

ℎ 𝑗 are nonzero) vs Distributed representation (After PCA; all 𝑧 𝑗

are nonzero)
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• In classification, the input comes from a mixture of classes 
(supervised). 

• If each class is also a mixture, e.g., of Gaussians, (unsupervised), we 
have a mixture of mixtures:

𝑝 𝑥 𝐶𝑖 =

𝑗=1

𝑘𝑖

𝑝 𝑥 𝐺𝑖𝑗 𝑃 𝐺𝑖𝑗

𝑝 𝑥 =

𝑖=1

𝐾

𝑝 𝑥 𝐶𝑖 𝑃 𝐶𝑖

– 𝑘𝑖 is is the number of components of class 𝐶𝑖
– 𝐺𝑖𝑗 is the component 𝑗 of class 𝐶𝑖

Mixture of Mixtures
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• Cluster based on similarities/distances

• Distance measure between instances xr and xs
Minkowski (𝐿𝑝) (Euclidean for 𝑝 = 2)

𝑑𝑚 (𝑥𝑟 , 𝑥𝑠 ) = 

𝑗=1

𝑑

𝑥𝑟𝑗 − 𝑥𝑠𝑗
𝑝

1
𝑝

City-block distance

𝑑𝑐𝑏 𝑥𝑟 , 𝑥𝑠 =

𝑗=1

𝑑

𝑥𝑟𝑗 − 𝑥𝑠𝑗

Hierarchical Clustering
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• Start with 𝑁 groups each with one instance and merge two closest 

groups at each iteration

• Distance between two groups 𝐺𝑖 and 𝐺𝑗:

– Single-link: 

𝑑 𝐺𝑖 , 𝐺𝑗 = min
𝑥𝑟∈𝐺𝑖,𝑥𝑠∈𝐺𝑗

𝑑(𝑥𝑟 , 𝑥𝑠)

– Complete-link:

𝑑 𝐺𝑖 , 𝐺𝑗 = max
𝑥𝑟∈𝐺𝑖,𝑥𝑠∈𝐺𝑗

𝑑(𝑥𝑟 , 𝑥𝑠)

– Average-link: the average of distances between all pairs

– centroid distance: the distance between the centroids

Agglomerative 
Clustering
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Example: Single-Link 
Clustering

26

Dendrogram
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• Two instances are grouped together at level ℎ if the distance 
between them is less than ℎ, or if there is an intermediate 
sequence of instances between them such that the distance 
between consecutive instances is less than ℎ.

• in the complete-link method, all instances in a group have a 
distance less than h between them



Choosing 𝑘

• Defined by the application, e.g., image quantization

• Plot data (after PCA) and check for clusters

• Incremental (leader-cluster) algorithm: Add one at a time until 
“elbow” (reconstruction error / log likelihood/ intergroup distances)

• Manually check for meaning
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Clustering

• We assume that the data was generated from a number of different 
classes. The aim is to cluster data from the same class together.

• How do we decide the number of classes?

• Why not put each data point into a separate class?

• What is the objective function that is optimized by sensible 
clusterings?
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A Generative View of 
Clustering

• We need a sensible measure of what it means to cluster the data 
well.

• This makes it possible to judge different methods. 

• It may make it possible to decide on the number of clusters.

• An obvious approach is to imagine that the data was produced by a 
generative model.

• Then we can adjust the parameters of the model to maximize 
the probability that it would produce exactly the data we 
observed.
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