MACHINE LEARNING IN BIOINFORMATICS

Part 4: Classification

František Mráz KSVI MFF UK

(Adapted slides by Junming Yin)

fppt.com

Classification

• Problem:

- Given sample objects together with labeling to which class they belong
- For a new object x predict its class label y

• Examples:

- Is this transaction a fraud?
- Will this customer buy this product?
- Is this protein an enzyme?
- Is this DNA sequence a gene?
- Is this site on RNA a splicing site?

Setting – A Supervised Learning

- A training dataset: a set of pairs $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, where x_i is an object and y_i is its class label
 - Usually $x_i \in \mathbb{R}^d$ is called input vector and $y_i \in \Theta$ is called a target variable
- A **test dataset**: a set of objects $x'_1, x'_2, ...$ with unknown class labels
- The **task**: predict class labels y'_1, y'_2, \dots of the objects x'_1, x'_2, \dots
- Domain of *y*:
 - $\Theta = \{0,1\}$: a binary classification problem
 - $\Theta = \{1, 2, ..., n\}$: a multiclass classification problem
 - $\Theta = \mathbb{R}$: a regression problem

Setting – A Supervised Learning

- A training dataset: a set of pairs $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, where x_i is an object and y_i is its class label
 - Usually $x_i \in \mathbb{R}^d$ is called input vector and $y_i \in \Theta$ is called a target variable
- A **test dataset**: a set of objects x'_1, x'_2, \dots with unknown class labels
- The **task**: predict class labels y'_1, y'_2, \dots of the objects x'_1, x'_2, \dots

• In bioinformatics:

- x are called explanatory variables, they describe the causes often refer to genotypic data
- *y* are called predictive variables, they describe observed phenotypic data
- task: find causes (model) to interpret the observed phenotypic data; i.e. model is a mapping: explanatory variables → predictive variables

Classification

• We assume that \mathcal{D} is randomly sampled from a space $(\mathbb{R}^d \times \Theta)$ satisfying an unknown function

$$f(x) \mapsto y$$

• The number of possible datapoints in $\mathbb{R}^d \times \Theta$ satisfying $f(x) \mapsto y$ is infinite, but the size of \mathcal{D} is finite

Overview of Classifiers

Nearest Neighbour

- Key idea: if x' is most similar to x_i , then $y_i = y'$
- Classification by looking at the 'Nearest Neighbour'

• Naïve Bayes

• A simple probabilistic classifier based on applying Bayes' theorem with strong (naïve) independence assumptions

Decision trees

- A series of decisions has to be taken to classify an object, based on its attributes
- The hierarchy of these decisions is ordered as a tree, a 'decision tree'.

Overview of Classifiers

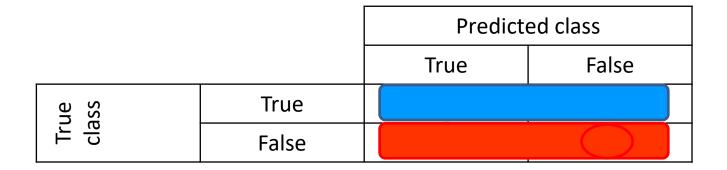
• Support Vector Machine

- Key idea: Draw a line (plane, hyperplane) that separates two classes of data
- Maximize the distance between the hyperplane and the points closest to it (margin)
- Test point is predicted to belong to the class whose half-space it is located in

Criteria for a good classifier

- Accuracy
- Runtime and scalability
- Interpretability
- Flexibility

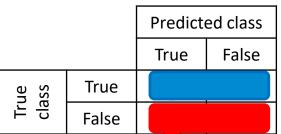
Binary Classifier Evaluation



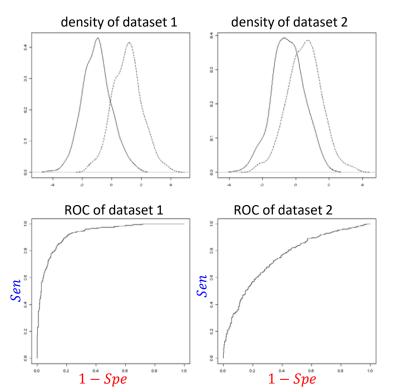
- Specifity $Spe = \frac{TN}{TN + FP}$ Sensitivity $Sen = \frac{TP}{TP + FN}$
- Total prediction accuracy $Tot = \frac{TN+TP}{TN+FP+TP+FN}$ **Predicted class** True False Which of the measures is the most important? TP True class True FN False FP TN

The Receiver Operating Characteristics (ROC)

- Only in two-class classification, and only if we can parametrize the classifier
- Plot $Sen = \frac{TP}{TP + FN}$ (vertical axis) against $(1 - Spe) = 1 - \frac{TN}{TN + FP} = \frac{FP}{TN + FP}$ (horizontal axis)



• **Criterion: A**rea **U**nder the ROC **C**urve (AUC)



Machine Learning in Bioinformatics

Nearest Neighbour

• Given x', we predict its label y' by

if
$$x_i = \arg \min_{x \in D} ||x - x'||^2$$
 then $y' = y_i$

- Label predicted for x' is that of the point closest to it, that is its 'nearest neighbour'
- Runtime
 - Naïvely, one has to compute the distance to all *N* neighbours in the dataset for each point:
 - *O*(*N*) for one point
 - $O(N^2)$ for the entire dataset
 - improving the performance and speed of a nearest neighbour classification
 - pre-sort the training sets in some way (such as kd-trees or Voronoi cells).
 - choose a subset of the training data such that classification by the 1-NN rule (using the subset) approximates the Bayes classifier (LVQ)

Naïve Bayes

• Bayes' Rule

$$P(C|x) = \frac{P(x|C)P(C)}{P(x)}$$

• Naïve Bayes Classification

• Classify x' into one of K classes C_1, \ldots, C_K

$$\arg\max_{C_k} P(C_k|x) = \frac{P(x|C_k)P(C_k)}{P(x)}$$

Naïve Bayes

Simplifications

- P(x) is the same for all classes, ignore this term.
- If x is multidimensional, that is if x contains d features $x = (x_1, ..., x_d)$, we further assume that $P(x|C_k) = P(C_k) \prod_{i=1}^d P(x_i|C_k)$

• We compute

"Proportional to"

$$P(x|C_k) \propto P(C_k) \prod_{j=1}^d P(x_j|C_k)$$

Time complexity O(NKd)

 $\arg\max_{C_i} P(C_i|x) = -$

 $\frac{P(x|C_i)P(C_i)}{P(x)}$

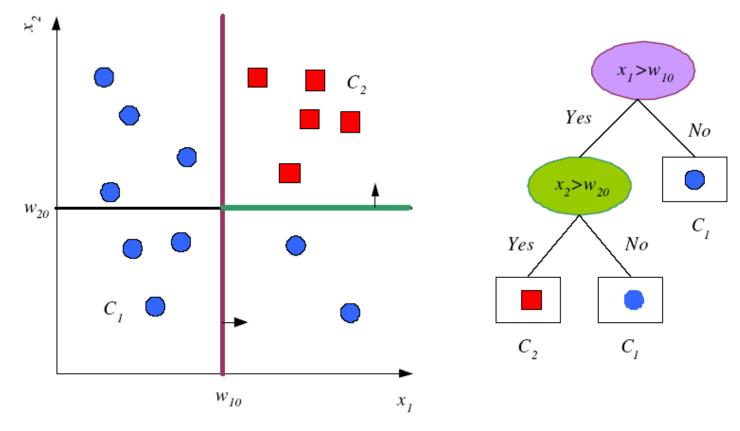
• Further simplification

for each class

- assume $P(C_k)$ is the same for all classes $1 \le k \le K$, ignore this term as well.
- That means $P(x|C_k) \propto \prod_{j=1}^{k} P(x_j|C_k)$ Simple Bayes Classifier

Decision Trees

• Recursively split the data space into regions that contain a single class only



Decision Tree

• Concept

- A decision tree is a flowchart like tree structure with
- a root: this is the uppermost node
- internal nodes: these represents tests on an attribute
- branches: these represent outcomes of a test
- leaf nodes: these hold a class label

• Classification

- given a test point *x*
- perform test on the attributes of *x* at the root
- follow the branch that corresponds to the outcome of this test
- repeat this procedure, until you reach a leaf node
- predict the label of x to be the label of that leaf node

Decision Tree

• Popularity

- requires no domain knowledge
- easy to interpret
- construction and prediction is fast

Construction

- requires to determine a splitting criterion at each internal node
- this splitting criterion tells us which attribute to test at node v
- we would like to use the attribute that best separates the classes on the training dataset

Decision Tree

• Information gain

- ID3 uses information gain as attribute selection measure
- The information content is defined as:

$$Info(D) = -\sum_{k=1}^{K} p(C_k) \log_2 p(C_k)$$

where $p(C_k)$ is the probability that an arbitrary tuple in *D* belongs to class C_k and is estimated by $|C_{k,D}|/|D|$

• This is also known as the Shannon entropy of *D*

Classification Trees (ID3, CART, C4.5)

For a node m, N_m instances reach m, $N_m^{(k)}$ out of them belong to C_k \mathbf{k}

$$\widehat{P}(C_k|x,m) = p_m^{(k)} = \frac{N_m^{(k)}}{N_m}$$

- Node *m* is pure if $p_m^{(k)}$ is 0 or 1
- Measure of impurity is entropy

$$\mathcal{I}_{m} = -\sum_{k=1}^{K} p_{m}^{(k)} \log_{2} p_{m}^{(k)}$$

The probability

node *m* is from

class C_k

that an instance *x*

which reaches the

Best Split

- If node m is pure (or almost pure $\mathcal{I}_m < \Theta$), generate a leaf and stop, otherwise split and continue recursively
- Impurity after split weighted entropy: N_{mj} instances from N_m take branch j, $1 \le j \le n$, $N_{mj}^{(k)}$ of them belong to C_k

$$\widehat{P}(C_k|x, m, j) = p_{mj}^{(k)} = \frac{N_{mj}^{(k)}}{N_{mj}} \checkmark$$
$$D'_m = -\sum_{j=1}^n \frac{N_{mj}}{N_m} \sum_{k=1}^K p_{mj}^{(k)} \log_2 p_{mj}^{(k)}$$

The probability that an instance xin branch j under the node m is from class C_k

 Find the variable and split that minimizes impurity (among all variables – and split positions for numeric variables)

GenerateTree(X) If NodeEntropy(X) $< \theta_I$ Create leaf labelled by majority class in X Return $i \leftarrow SplitAttribute(X)$ For each branch of x_i Find X_i falling in branch GenerateTree(X_i)

SplitAttribute(X)

 $MinEnt \leftarrow MAX$ For all attributes i = 1, ..., dIf x_i is discrete with *n* values Split X into X_1, \ldots, X_n by x_i $e \leftarrow \text{SplitEntropy}(X_1, \dots, X_n)$ If e < MinEntMinEnt \leftarrow e; $bestf \leftarrow i$ Else /* x_i is numeric */ For all possible splits Split X into X_1, X_2 on x_i $e \leftarrow \text{SplitEntropy}(X_1, X_2)$ If e < MinEntMinEnt \leftarrow e: $bestf \leftarrow i$

Return *bestf*

Regression Trees

• Error at node *m*:

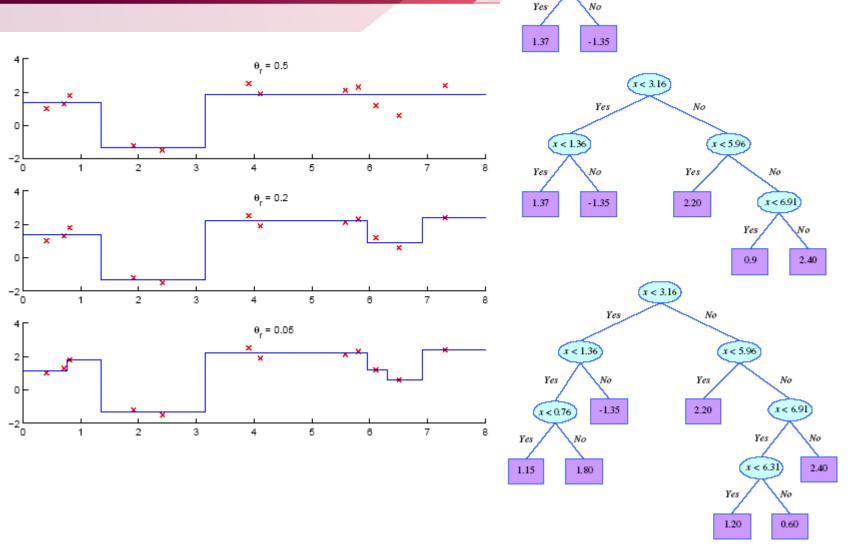
 $b_m(x) = \begin{cases} 1 & \text{if } x \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases}$

$$E_m = \frac{1}{N_m} \sum_{t} (y_t - g_m)^2 b_m(x_t) \qquad g_m = \frac{\sum_{t} b_m(x_t) y_t}{\sum_{t} b_m(x_t)}$$

• After splitting:

$$b_{mj}(x) = \begin{cases} 1 & \text{if } x \text{ reaches node } m \text{ and branch } j \\ 0 & \text{otherwise} \end{cases}$$
$$E'_m = \frac{1}{N_m} \sum_j \sum_t (y_t - g_{mj})^2 b_{mj}(x_t) \quad g_{mj} = \frac{\sum_t b_{mj}(x_t)y_t}{\sum_t b_{mj}(x_t)}$$

Model Selection in Trees



x < 3.16

1.86

Yes

x < 1.36

Controlling Size of the Tree

- Grow-then-prune strategy (CART algorithm Classification And Regression Tree):
 - create very large tree
 - prune back according to some criterion
- Pruning criteria:
 - (impurity + $\alpha \cdot |tree|$)
 - α determined by cross-validation

Categorical Variables, Missing Values

- **Problem**: with *d* possible unordered variables, e.g., color (blue, white, red), there are $2^{d-1} 1$ possible partitions
- **Solution** (when only two possible outcomes 0/1): sort variables according to the number of occurrences in each, e.g., white 0.9, red 0.45, blue 0.3. Split predictor as with ordered variables.

Missing values:

- **Problem**: points *x* with missing values *y*, due to:
 - the proper measurement not taken
 - a source causing the absence of labels
- Solution:
 - categorical case: create new category missing
 - use surrogate variables: use only those variables that are available for a split

Instability

- **Problem:** high variance
 - small changes in the data may lead to very different splits,
 - price to pay for the hierarchical nature of decision trees,
 - more stable criteria could be used.

Decision Tree Tools

- Most commonly used tools for learning decision trees:
 - CART (Classification And Regression Tree) (Breiman et al., 1984)
 - C4.5 (Quinlan, 1986, 1993) and C5.0 (RuleQuest Research) a commercial system.
- Differences: minor between latest versions.

Summary

- Straightforward to train.
- Easily interpretable (modulo instability).
- Often not best results in practice
 - \rightarrow boosting decision trees in a later lecture