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Perceptron

• Given a training set of pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑁 where 𝑥𝑖ℝ
𝑑, 𝑦𝑖  {−1,1}, for 

𝑖 = 1,… , 𝑁 and some integer 𝑑 > 0, we would like to find vector 𝑤 and 
a constant 𝑏 such that

• 𝑤𝑇𝑥 + 𝑏 ≥ 0 if 𝑦𝑖 = 1

• 𝑤𝑇𝑥 + 𝑏 < 0 if 𝑦𝑖 = −1

• Perceptron learning algorithm:

1. Initialize the weight vector 𝑤(0) and 𝑏(0) with small random 
values; 𝑡: = 0

2. For 𝑖 = 1,… ,𝑁
Compute the actual output of the perceptron 𝑜 = sgn(𝑤 𝑡 𝑇𝑥𝑖 + 𝑏(0))
If 𝑜 = 𝑦𝑖 then 𝑤(𝑡 + 1) = 𝑤(𝑡); 𝑏 𝑡 + 1 = 𝑏 𝑡 ;

else if 𝑜 = −1 and 𝑦𝑖 = +1 then 𝑤 𝑡 + 1 = 𝑤 𝑡 + 𝑥𝑖; 𝑏 𝑡 + 1 = 𝑏 𝑡 + 1

else if 𝑜 = +1 and 𝑦𝑖 = −1 then 𝑤 𝑡 + 1 = 𝑤 𝑡 − 𝑥𝑖; 𝑏 𝑡 + 1 = 𝑏 𝑡 − 1
𝑡 ∶= 𝑡 + 1

3. Repeat step 2. until some stop condition
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• The elements of w are called weights
• 𝑏 is called threshold (or bias)



Perceptron

• If the training set is linearly separable, the perceptron learning 
algorithm always finds a separating hyperplane such that all training 
samples will be correctly classified
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𝑤𝑇𝑥 + 𝑏 < 0

𝑤𝑇𝑥 + 𝑏 > 0 𝑤𝑇𝑥 + 𝑏 = 0



Perceptron

• The perceptron can learn any of the following separating 
hyperplanes
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Perceptron

• The perceptron can learn any of the following separating 
hyperplanes
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Are all solutions 
equally good?



Classification Margin

• Margin is the width of the (symmetric) band around decision 
boundary without any training samples 
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Classification Margin

• Margin is the width of the (symmetric) band around decision 
boundary without any training samples 
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margin1

margin2



Classification Margin

• Margin is the width of the 
band around decision 
boundary without any 
training samples

• Maximize the margin!

• Is larger margin better? 
Why?
• Intuition, but we will answer 

this later.
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margin1

margin2

margin3



Classification Margin: 
Bubbles around Samples 

• Margin is the width of the 
band around decision 
boundary without any 
training samples

• As margin increases, the 
feasible region (for the 
separating hyperplane) 
reduces
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Classification Margin: 
Bubbles around Samples 

• Margin is the width of the 
band around decision 
boundary without any 
training samples

• As margin increases, the 
feasible region (for the 
separating hyperplane) 
reduces – until single 
feasible separating 
hyperplane remains
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Classification Margin: 
Bubbles around Samples 

• Margin is the width of the 
band around decision 
boundary without any 
training samples

• As margin increases, the 
feasible region reduces –
until single feasible 
separating hyperplane 
remains

• Only few circles touch the 
decision boundary – few 
samples  called support 
vectors control the 
decision boundary 
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Classification Margin: 
Band vs. Bubbles

• Margin is the width of the 
band around decision 
boundary without any 
training samples

• As margin increases, the 
feasible region reduces –
until single feasible 
separating hyperplane 
remains

• Only few circles touch the 
decision boundary – few 
samples  called support 
vectors control the 
decision boundary 
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Margin 𝜌 = 2𝑟

𝑟



Justification for Maximizing 
the Margin

• Work by Vapnik and Červonenkis in 1970’s:

1. V. N. Vapnik, A. Ya. Červonenkis: On Uniform Convergence of 
the Frequencies of Events to their Probabilities. Teoria 
Verojatnosti i Primenenia, 1971, 16(2), pp. 264-279

2. V. N. Vapnik: Estimation of Dependencies Based on Empirical 
Data. Nauka, Moscow, 1979 [in Russian]

3. V. N. Vapnik: The Nature of Statistical Learning Theory. 
Springer Verlag, New York, 1995

• Bound on expected loss [3]:

𝑅 𝛼 ≤ 𝑅𝑡𝑟𝑎𝑖𝑛 𝛼 +
𝑓 ℎ

𝑁

Machine Learning in Bioinformatics 17March 29, 2019



VC dimension

• Let us have a dataset containing 𝑛 points. These 𝑛 points can

• be labeled in 2𝑛 ways as positive and negative. Therefore, 
2𝑛 different learning problems can be defined by 𝑛 data points. 

• If for any of these problems, we can find a hypothesis 𝛾 ∈ ℋ that 
separates the positive examples from the negative, then we say ℋ
shatters 𝑛 points. That is, any learning problem definable by 𝑛
examples can be learned with no error by a hypothesis drawn from 
ℋ.

• The maximum number of points that can be shattered by ℋ is 
called the Vapnik-Chervonenkis (VC) dimension of ℋ, is denoted as 
ℎ

• Ex.: for ℋ = set of all rectangles in 2D, ℎ = 4

• Ex.: for ℋ = set of all hyperplanes in 𝑑 dimensional space,
ℎ = 𝑑 + 1
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Justification for Maximizing 
the Margin

• Bound on expected loss [3]:

𝑅 𝛼 ≤ 𝑅𝑡𝑟𝑎𝑖𝑛 𝛼 +
𝑓 ℎ

𝑁

• 𝑅(𝛼) is the risk (loss) when we select decision boundary 𝛼

• 𝑅𝑡𝑟𝑎𝑖𝑛 𝛼 is the risk (loss) from training when we select decision 
boundary 𝛼

• ℎ is a VC-dimension, 𝑓 ℎ = ℎ + ℎ log 2𝑁 − ℎ log ℎ − 𝑐

•
𝑓 ℎ

𝑁
is a monotonically increasing function 

• “Future error on a (new) test sample is limited by the error on 
the training samples plus a monotonically increasing function of 
ℎ.”
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Why Maximize the Margin?

• To reduce test error, keep training error low (say 0) and minimize the 
VC-dimension ℎ

• Relative margin 
𝜌

𝐷
• VC-dimension is limited

ℎ ≤ min 𝑑,
𝐷2

𝜌2
+ 1

• Regardless of dimensionality 𝑑, 

we can minimize VC-dimension 

by maximizing the margin 𝜌 –

we can make ℎ independent of 

the dimensionality 𝑑.

• Maximizing margin improves 

generalization.
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Margin 𝜌

Data 
diameter 

𝐷

Smallest circle encompassing all data



Formalizing the Margin

• Let a training set of pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑁 where 𝑥𝑖  ℝ𝑑, 𝑦𝑖  {−1,1},
for 𝑖 = 1, … ,𝑁 and some integer 𝑑 > 0, be separated by a 
hyperplane, then for each training sample (𝑥𝑖 , 𝑦𝑖)

ቋ
𝑤𝑇𝑥 + 𝑏 ≥ 0 if 𝑦𝑖 = +1

𝑤𝑇𝑥 + 𝑏 ≤ 0 if 𝑦𝑖 = −1
⟺ 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ≥ 0

• For every support vector 𝑥𝑠 the its distance from the separating 
hyperplane 𝑤𝑇𝑥 + 𝑏 = 0 is

𝜌

2
=
|𝑤𝑇𝑥𝑠 + 𝑏|

𝑤
=
𝑦𝑠(𝑤

𝑇𝑥𝑠 + 𝑏)

𝑤

• Then for all vectors 𝑥 we have:

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥

𝜌

2
𝑤
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Formalizing the Margin

• Then for all vectors 𝑥 we have:

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥

𝜌

2
𝑤

• We want to maximize 𝜌, hence we can

1) Either keep 𝑤 = 1, and maximize 𝑦 𝑤𝑇 + 𝑏 , or

2) let 𝑦 𝑤𝑇 + 𝑏 ≥ 1 , and minimize 
1

2
𝑤

• We use approach 2) and formulate the problem as
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Minimize:   
1

2
𝑤𝑇𝑤

Subject to: 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1 ≥ 0,  𝑖

𝑔 𝑥 = 𝑤𝑇𝑥 + 𝑏

𝑅



The Optimization Problem

• Quadratic objective function with linear inequalities as constraints 
use a QP solver

• Integrating the constraints into the Lagrangian form, we get:

• Minimize 𝐽 with respect to 𝑤 and 𝑏, and maximize with respect to 𝜶
- search for a saddle point
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Minimize:   ½𝑤𝑇𝑤
Subject to: 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 − 1 ≥ 0,  𝑖

Minimize:  𝐽 𝑤, 𝑏, 𝜶 =
1

2
𝑤𝑇𝑤 − σ𝑖=1

𝑁 𝛼𝑖𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 + σ𝑖=1

𝑁 𝛼𝑖
Subject to:   𝛼𝑖 0  𝑖



Lagrange Theory
Karush-Kuhn-Tucker Condition

• Min. 𝐽 𝑤

• S.t. ℎ𝑗(𝑤) = 0 𝑚 equality constraints

𝑔𝑖 𝑤 ≤ 0 𝑁 inequality constraints

• Lagrangian: 𝐿(𝑤, 𝛼, 𝛽) = 𝑓(𝑥) + σ𝑖=1
𝑁 𝛼𝑖𝑔𝑖 𝑤 + σ𝑗=1

𝑚 𝛽𝑗ℎ𝑗(𝑤)

• If all 𝐽 𝑤 , ℎ𝑗(𝑤) and 𝑔𝑖(𝑤) are convex functions, a solution exists 

where for the optimal value 𝐽∗ of 𝐽(𝑤) it holds:
𝐽∗ = min

𝑤
max
𝜶≥0,𝛽

𝐿 𝑤, 𝜶, 𝛽 = max
𝜶≥0,𝛽

min
𝑤

𝐿 𝑤, 𝜶, 𝛽 = 𝐷∗

1. Gradient of the Lagrangian: ∇𝐿 = 0

2. Constraints: ℎ𝑗(𝑤
∗) = 0 & 𝑔𝑖(𝑤

∗) ≤ 0

3. Complementary Slackness: 𝛼𝑖
∗𝑔𝑖 𝑤

∗ = 0

4. Sign condition on the inequality multipliers: 𝛼𝑖
∗ ≥ 0
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Primal problem Dual problem

𝑤∗, 𝛼∗

optimal 
values



Lagrange Theory
Karush-Kuhn-Tucker Condition

𝐽∗ = min
𝑤

max
𝜶≥0,𝛽

𝐿 𝑤, 𝜶, 𝛽 = max
𝜶≥0,𝛽

min
𝑤

𝐿 𝑤, 𝜶, 𝛽 = 𝐷∗

1. Gradient of the Lagrangian: ∇𝐿 = 0

2. Constraints: ℎ𝑗(𝑤
∗) = 0 & 𝑔𝑖(𝑤

∗) ≤ 0

3. Complementary Slackness: 𝛼𝑖
∗𝑔𝑖 𝑤

∗ = 0

4. Sign condition on the inequality multipliers: 𝛼𝑖
∗ ≥ 0

• For convex problems KKT conditions are necessary and sufficient 
condition for primal and dual solution
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Converting to the Dual 
Form

• Objective: 𝐽 𝑤, 𝑏, 𝜶 =
1

2
𝑤𝑇𝑤 − σ𝑖=1

𝑁 𝛼𝑖𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 + σ𝑖=1

𝑁 𝛼𝑖

1:
𝜕𝐽(𝑤, 𝑏, 𝜶)

𝜕𝑤
= 0 and 2:

𝜕𝐽(𝑤, 𝑏, 𝜶)

𝜕𝑏
= 0

• At optimum

1: 𝑤∗ =෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝑥𝑖 2:෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0 3: 𝛼𝑖 𝑦𝑖 𝑤
∗𝑇𝑥𝑖 + 𝑏∗ − 1 = 0

𝐽 𝑤, 𝑏, 𝜶 = σ𝑖=1
𝑁 𝛼𝑖 +

1

2
𝑤𝑇𝑤 − 𝑤𝑇 σ𝑖=1

𝑁 𝛼𝑖𝑦𝑖𝑥𝑖 −𝑏σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖

• Obj. 𝐷 𝜶 = σ𝑖=1
𝑁 𝛼𝑖 +

1

2
𝑤𝑇𝑤 − 𝑤𝑇 σ𝑖=1

𝑁 𝛼𝑖𝑦𝑖𝑥𝑖 − 𝑏σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖

• Using 1,2: 𝐷 𝜶 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗
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Karush-Kuhn-Tucker condition



𝑏∗ = 1 − 𝑤∗𝑇𝑥𝑠

𝛼𝑖 𝑦𝑖 𝑤
∗𝑇𝑥𝑖 + 𝑏∗ − 1 = 0

𝑤∗ =෍

𝑖=1

𝑁

𝛼𝑖
∗𝑦𝑖𝑥𝑖

Solving the Dual Form

• The only unknowns (variables) are 𝛼𝑖 ’s.

• The constraints are also on 𝛼𝑖 ’s only.

• Data vectors appear only as dot products.

• Objective is convex, subject to linear 
constraints

• Can be solved using standard convex 
quadratic program solvers.
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Maximize 𝐷 𝜶 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

Subject to:   𝛼𝑖 ≥ 0 𝑖 and   σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

QP solver 𝛼𝑖
∗



Noise in Data
Non-Separable Classes

• Introduce slack variables  i  0

• Also minimize training error σ𝑖=1
𝑁 𝜉𝑖
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Minimize:   ½𝑤𝑇𝑤
Subject to: 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 − 1 ≥ 0, 𝑖

Minimize:   ½𝑤𝑇𝑤
Subject to: 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖, 𝑖

Margin 

i = 0.2

i = 0.5

i = 2.3

Minimize: ½𝑤𝑇𝑤 + 𝐶σ𝑖=1
𝑁 𝜉𝑖 𝐶 > 0 const

Subject to: 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖; 𝜉𝑖 ≥ 0,  𝑖



• Form the Lagrangian and convert it to dual problem

• Note that neither the slack variables, nor their Lagrange multipliers 
appear in the dual problem.

• The only change is the additional constraint on 𝛼𝑖
• The parameter 𝐶 controls the relative strength between training 

error and the VC dimension 

Maximize 𝐷 𝜶 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

Subject to:   0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 and σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

Dual Form with Slack 
Variables 
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Non-Separable Classes
Non-Linear Boundaries

• Add a new feature by a nonlinear mapping  into a higher-
dimensional space
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Φ
𝑥1
𝑥2

=

𝑥1
𝑥2

𝑥1
2 + 𝑥2

2



SVM with the Mapping 

• Data vectors occur only in dot products in SVM-learning and testing

• Training

• Testing

Machine Learning in Bioinformatics 31March 29, 2019

𝐷 𝜶 =෍

𝑖=1

𝑁

𝛼𝑖 −
1

2
෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗Φ 𝑥𝑖
𝑇Φ 𝑥𝑗

Subject to 0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖, and σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

𝐿𝑎𝑏𝑒𝑙(𝑥𝑡𝑒𝑠𝑡) = 𝑠𝑖𝑔𝑛 𝑤∗ ∙ Φ 𝑥𝑡𝑒𝑠𝑡 + 𝑏𝑜

𝑤∗ =෍

𝑖=1

𝑁

𝛼𝑖
∗𝑦𝑖Φ 𝑥𝑖

𝐿𝑎𝑏𝑒𝑙(𝑥𝑡𝑒𝑠𝑡) = 𝑠𝑖𝑔𝑛 ෍

𝑖=1

𝑁

𝛼𝑖
∗𝑦𝑖Φ(𝑥𝑖 ∙ Φ(𝑥𝑡𝑒𝑠𝑡)) + 𝑏∗

𝒂 ∙ 𝒃 denotes dot 
product 𝒂𝑇𝒃



SVM with the Mapping 

• Data vectors occur only in dot products in SVM-learning and testing

• If there exists a function 𝐾(𝑥, 𝑦) such that 𝐾 𝑥, 𝑦 = Φ(𝑥) ⋅ Φ 𝑦
which is easier to compute than two mappings into a higher-
dimensional space and dot-product, we can be more effective

𝐷 𝜶 =෍

𝑖=1

𝑁

𝛼𝑖 −
1

2
෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗

𝐿𝑎𝑏𝑒𝑙(𝑥𝑡𝑒𝑠𝑡) = 𝑠𝑖𝑔𝑛 ෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥𝑡𝑒𝑠𝑡) + 𝑏∗
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𝐾 is called kernel function



• Let Φ 𝑥 = Φ
𝑥1
𝑥2

=

𝑥1𝑥1
𝑥1𝑥2
𝑥2𝑥1
𝑥2𝑥2

• Let 

𝐾 𝑥, 𝑦 = Φ 𝑥 ∙ Φ 𝑦 =

𝑥1
2

𝑥1𝑥2
𝑥2𝑥1
𝑥2
2

∙

𝑦1
2

𝑦1𝑦2
𝑦2𝑦1
𝑦2
2

= 𝑥1
2𝑦1

2 + 2𝑥1𝑥2𝑦1𝑦2 + 𝑥2
2𝑦2

2

= 𝑥1𝑦1 + 𝑥2𝑦2
2 = 𝑥 ∙ 𝑦 2

Sample Kernels:
A Simple Quadratic Kernel
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Instead of mapping with  and 
computing dot product, we can 

compute 𝐾(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 2

(3 mult.+1 add)
instead of

(10 mult.+3 add)

Here y is a vector of the 
same size as the vector x



• Original 3-dimensional space mapped into 10 dimension

Let 𝐾 𝑥, 𝑦 = 𝑥 ∙ 𝑦 3 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3
3

• Actually we have only 𝐾 𝑥, 𝑦 ≈ Φ 𝑥 ∙ Φ(𝑦)

Sample Kernels:
A Cubic Kernel
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(5 mult.+2 add)
instead of

(38 mult.+9 add) Φ 𝑥 = Φ

𝑥1
𝑥2
𝑥3

=

𝑥1
3

𝑥2
3

𝑥3
3

𝑥1
2𝑥2
𝑥1𝑥2

2

𝑥1
2𝑥3
𝑥1𝑥3

2

𝑥2
2𝑥3

𝑥2𝑥3
2

𝑥1𝑥2𝑥3



A Generic Polynomial 
Kernel

• Adding two kernels results in a new kernel

𝐾 𝑥, 𝑦 = 𝐾1 𝑥, 𝑦 + 𝐾2 𝑥, 𝑦 : Φ 𝑥 =
Φ1 𝑥

Φ2 𝑥

𝐾 𝑥, 𝑦 = Φ 𝑥 ∙ Φ 𝑦 = Φ1 𝑥 ∙ Φ1 𝑦 + Φ2 𝑥 ⋅ Φ2 𝑦

𝐾𝑝 𝑥, 𝑦 = 1 + 𝑥 ∙ 𝑦 𝑝 = 1 + 𝑥 ⋅ 𝑦 + 𝑥 ∙ 𝑦 2 +⋯+ 𝑥 ⋅ 𝑦 𝑝

• Adding 1 and raising to the power of 𝑝 maps the input vector into a 
space containing all original dimensions, all 2-products, 3-products, 
… , 𝑝-products
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Coefficients are left out



Which Functions are 
Kernels?

• A kernel function is a function which is equivalent to an inner 
product in some feature space

• Example:

• 2-dimensional vectors 

• Let 𝐾(𝑥, 𝑦) = 1 + 𝑥 ∙ 𝑦 2

• we must show that 𝐾 𝑥, 𝑦 =  𝑥 ∙ (𝑦), for some function  ⋅

𝐾 𝑥, 𝑦 = 1 + 𝑥 ∙ 𝑦 2 = 1 + 𝑥1
2𝑦1

2 + 2𝑥1𝑦1𝑥2𝑦2 + 𝑥2
2𝑦2

2 + 2𝑥1𝑦1 + 2𝑥2𝑦2 =

= 1, 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2, 2𝑥1, 2𝑥2
𝑇
1, 𝑦1

2, 2𝑦1𝑦2, 𝑦2
2, 2𝑦1, 2𝑦2 =

= Φ 𝑥 ∙ Φ 𝑦 ,

where Φ 𝑥 = 1, 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2, 2𝑥1, 2𝑥2
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Which Functions are 
Kernels?

• Checking that 𝐾(𝑥, 𝑦) = (𝑥) ∙ (𝑦), for some function ( ⋅ ) can be 
cumbersome

• In fact, we do not even have to knowΦ exactly as long as we are 
sure that it exists

• A necessary and sufficient condition for a function 𝐾(𝑥, 𝑦) to be a 
valid kernel is that for each sequence of vectors 𝑥𝑖 𝑖=1,…,𝑁, the 
Gram matrix 

𝐾(𝑥1, 𝑥1) 𝐾(𝑥1, 𝑥2)
𝐾(𝑥2, 𝑥1) 𝐾(𝑥2, 𝑥2)

⋯ 𝐾(𝑥1, 𝑥𝑛)
⋯ 𝐾(𝑥2, 𝑥𝑁)

⋮ ⋮
𝐾(𝑥𝑁, 𝑥1) 𝐾(𝑥𝑛, 𝑥2)

⋱ ⋮
⋯ 𝐾(𝑥𝑁, 𝑥𝑁)

should be positive semidefinite, i.e. 𝑥𝑇𝐾𝑥 ≥ 0, for all vectors 𝑥
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Further Examples of 
Kernels

• Linear: 𝐾(𝑥, 𝑦) = 𝑥𝑇𝑦

• Mapping (𝑥) is 𝑥 itself, i.e. the same dimension

• Polynomial of degree 𝑝: 𝐾𝑝 𝑥, 𝑦 = 1 + 𝑥𝑇𝑦 𝑝

• Mapping (𝑥) into 
𝑑 + 𝑝
𝑝

dimensions

• Gaussian (radial basis function): 𝐾 𝑥, 𝑦 = 𝑒
−

𝑥−𝑦 2

2𝑒2

• Mapping (𝑥) is infinite dimensional – every point is mapped to a 
function (a Gaussian); the separator is a combination of the 
functions of the support vectors

• Higher order space still has intrinsic dimensionality the same as 𝑥 itself, 
but linear separator in it corresponds to a non-linear separator in the 
original space 
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Further Methods for 
Constructing Kernels

• Let 𝐾1 (𝑥, 𝑦) and 𝐾2(𝑥, 𝑦) be two valid kernel functions, then the 
following functions are kernels too (𝑐 > 0 is a constant, 𝑓(⋅) is any 
function, 𝑞(⋅) is a polynomial with non-negative coefficients, 𝜑(𝑥) is 
a function from 𝒳 to 𝐑𝑀 , 𝑘3 (·,·) is a valid kernel in 𝐑𝑀, 𝑨 is a 
symmetric positive semidefinite matrix, 𝑥𝑎 and 𝑥𝑏 are variables (not 
necessarily disjoint) with 𝑥 = (𝑥𝑎, 𝑥𝑏), and 𝑘𝑎 and 𝑘𝑏 are valid kernel 

functions over their respective spaces):

• 𝐾(𝑥, 𝑦) = 𝑐 𝐾1(𝑥, 𝑦)

• 𝐾(𝑥, 𝑦) = 𝑓 𝑥 𝐾1(𝑥, 𝑦)𝑓(𝑦)

• 𝐾(𝑥, 𝑦) = 𝑞(𝐾1(𝑥, 𝑦))

• 𝐾(𝑥, 𝑦) = exp(𝐾1(𝑥, 𝑦))

• 𝐾(𝑥, 𝑦) = 𝐾1(𝑥, 𝑦) + 𝐾2(𝑥, 𝑦)

• 𝐾(𝑥, 𝑦) = 𝐾1(𝑥, 𝑦)𝐾2(𝑥, 𝑦)
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• 𝐾(𝑥, 𝑦) = 𝐾3(𝜑(𝑥), 𝜑(𝑦))

• 𝐾 𝑥, 𝑦 = 𝑥𝑇𝑨𝑦

• 𝐾(𝑥, 𝑦) = 𝑘𝑎(𝑥𝑎, 𝑦𝑎) + 𝑘𝑏(𝑥𝑏, 𝑦𝑏)

• 𝐾(𝑥, 𝑦) = 𝑘𝑎(𝑥𝑎, 𝑦𝑎)𝑘𝑏(𝑥𝑏, 𝑦𝑏)



Application of SVM

• Multi-class classification 

• most widely used method: one versus all

• Also exists a direct multi-classification using SVM

• For SVM optimization, every local solution is global due to the 
property of the convex objective function.

• The solution is guaranteed to be unique.

• SVM training always finds a global solution is in contrast to the case 
of neural networks, where many local minima usually exist.
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Method of Solution

• The support vector optimization problem can be solved 

1. Analytically: 

• only when the number of training data is very small, or for the 
separable case when it is known beforehand which of the training 
data become support vectors.

• For the general analytic case, the worst case computational 
complexity is of order 𝑁𝑠

3 (inversion of Hessian), where 𝑁𝑠 is the 
number of support vectors.

2. Numerically:

• In most real world cases, the quadratic optimization problem must 
be solved numerically.

• For small problems, any general purpose optimization package that 
solves linearly constrained convex quadratic programs will do

• For large problems, divide and conquer technique is usually used
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Time Complexity of Testing

• 𝑂(𝑀𝑁𝑠), where 

• 𝑀 is the number of operations required to evaluate the kernel. 
For RBF kernel, 𝑀 is 𝑂(𝑑). 

• 𝑁𝑠 is the number of support vectors.
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SVM Applications in 
Bioinformatics

• Cancer Classification using Gene Expression Data

• Protein Mutation Stability Prediction

• Protein Secondary Structure Prediction

• Protein Fold Recognition

• Protein Contact Map Prediction

• Protein Structure Classification

• ……
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Current Cancer Diagnosis

• A reliable and precise classification of tumors is essential for 
successful treatment of cancer.

• Current methods relies on the subjective interpretation of both 
clinical histopathological information with an eye toward placing 
tumors in currently accepted categories based on the tissue of origin 
of the tumor.

• However, clinical information can be misleading or incomplete.

• there is a wide spectrum in cancer morphology and many tumors 
are atypical or lack morphologic features, which results in diagnostic 
confusion.

Jia Yi, 2005
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DNA Microarray-Based 
Cancer Diagnosis

• Molecular diagnostics offer the promise of precise, objective, and 
systematic cancer classification.

• Recently, DNA microarray tumor gene expression profiles have been 
used for cancer diagnosis.

• By allowing the monitoring of expression levels for thousands of 
genes simultaneously, such techniques will lead to a more complete 
understanding of the molecular variations among tumors, hence to 
a finer and more reliable classification.
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Tumor Classification Types

• There are three main types of statistical problems associated with 
tumor classification:

• The identification of new tumor classes using gene expression 
profiles – unsupervised learning.

• The classification of malignancies into known classes –
supervised learning.

• The identifications of “marker” genes that characterize the 
different tumor classes – variable selection.

• Cancer datasets: 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

Machine Learning in Bioinformatics 46March 29, 2019

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

