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Empirical Comparisons of Different 
Classification Algorithms
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Caruana and Niculesu-Mizil, ICML 2006

Overall rank by mean performance across problems and metrics (based on bootstrap analysis).

BST-DT: boosting with decision tree weak classifier RF: random forest
BAG-DT: bagging with decision tree weak classifier SVM: support vector machine
ANN: neural nets KNN: k-nearest neighborhood
BST-STMP: boosting with decision stump weak classifier DT: decision tree 
LOGREG: logistic regression NB: naïve Bayesian



Empirical Study on High-
Dimension Tasks
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Caruana et al., ICML 2008

Moving average standardized scores of each learning algorithm as a function of the dimension.

The rank for the algorithms to perform consistently well:
(1) random forest  (2) neural nets (3) boosted tree (4) SVMs



Ensemble Methods

1. Bagging (Breiman 1994,…)

2. Boosting (Freund and Schapire 1995, Friedman et al. 1998,…)

3. Random forests (Breiman 2001,…)

• Idea: Predict class label for unseen data by aggregating a set of 
predictions (classifiers learned from the training data) – build different 
“experts”, and let them vote

• Advantages: 

• Improved predictive performance

• Other types of classifiers can be directly included

• Easy to implement

• No too much parameter tuning

• Disadvantages:

• The combined classifier is not so transparent (black box)

• Not a compact representation
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General Idea

Machine Learning in Bioinformatics 5May 16, 2019

𝑆
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Why does it work?

• Suppose there are 25 base classifiers

• Each classifier has error rate  = 0.35

• Assume independence among classifiers

• Probability that the ensemble classifier makes a wrong prediction:

෍

𝑖=13

25
25

𝑖
𝜀𝑖 1 − 𝜀 25−𝑖 = 0.06
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Bagging
Bootstrap Aggregating

• Training
• Given a dataset 𝑆, at each iteration 𝑖, a training set 𝑆𝑖 is sampled with 

replacement from 𝑆 (i.e. bootstraping)

• A classifier 𝐶𝑖 is learned for each 𝑆𝑖
• Classification: given an unseen sample 𝑋,

• Each classifier 𝐶𝑖 returns its class prediction

• The bagged classifier 𝐻 counts the votes and assigns the class with the 
most votes to 𝑋

• Regression: can be applied to the prediction of continuous values 
by taking the average value of each prediction.

• Bagging works because it reduces variance by voting/averaging

• In some pathological hypothetical situations the overall error 
might increase

• Usually, the more classifiers the better
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Notes on Bootstrapping

• Given a dataset of size 𝑁, a bootstrapped replicate is a dataset of 
the same size (i.e. 𝑁) where instances are extracted with

replacement

• Given the replacement, it is possible that an instance is present 
more than one time in the replicate

• The fraction of never selected instances 1 −
1

𝑁

𝑁
can be estimated 

as 
1

𝑒
≈ 0.368

• The out-of-sample dataset has therefore size ≈ 0.368

• The out-of-sample dataset can be used like a validation set to
estimate the importance of features
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Bagging

• Problem: we only have one dataset.

• Solution: generate new ones of size 𝑁 by bootstrapping, i.e. 

sampling it with replacement

• Can help a lot if data is noisy.
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Bias-Variance 
Decomposition

• Used to analyze how much selection of any specific training set 
affects performance

• Assume infinitely many classifiers, built from different training sets

• For any learning scheme,

• Bias = expected error of the combined classifier on new data

• Variance = expected error due to the particular training set 
used

• Total expected error ~ bias + variance
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When does Bagging 
work?

• Learning algorithm is unstable: if small changes to the training set 
cause large changes in the learned classifier.

• If the learning algorithm is unstable, then Bagging almost always 
improves performance

• Some candidates:

• Decision tree, decision stump (a decision tree of height 1), 

regression tree, linear regression, SVMs
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Why Bagging works

• Let 𝑆 = { 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑁} be the set of training samples

• Generate 𝑆 1 , … , 𝑆 𝑚 from bootstrapping

• Compute the  𝑥, 𝑆 𝑘 for each 𝑘 = 1,… ,𝑚

• Compute 𝜑 𝑥, 𝑆 = 𝐸𝑘 𝜑 𝑥, 𝑆 𝑘 by aggregation (voting, mean, etc.)
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• We select some input samples 
• We learn a regression model 
• Very sensitive to the input selection 
• 𝑚 training sets (𝑁 items each) = 𝑚
different models

𝑥1
1
, 𝑦1

1
, … , 𝑥𝑁

1
, 𝑦𝑁

1
→ መ𝑓 1 𝑥 = 𝑌 1

𝑥1
2
, 𝑦1

2
, … , 𝑥𝑁

2
, 𝑦𝑁

2
→ መ𝑓 2 𝑥 = 𝑌 2

⋮
መ𝑓 1 , መ𝑓 2 , … , መ𝑓 𝑚 → 𝑌 1 , 𝑌 2 , … , 𝑌 𝑚

𝑍 =
1

𝑚
෍

𝑖=1

𝑚

𝑌 𝑖



Proof of Convergence

• Hypothesis: The average will converge to something meaningful
• Assumptions 

• 𝑌 1 , 𝑌 2 , … , 𝑌 𝑚 are iid (independent, identically distributed)
• 𝐸 𝑌 = 𝑦 (𝐸 𝑌 is an unbiased estimator of 𝑦)

• Expected error
• 𝐸[ 𝑌 − 𝑦 2]

• With aggregation

• 𝑍 =
1

𝑚
σ𝑖=1
𝑚 𝑌 𝑖

• 𝐸 𝑍 − 𝑦 2 = 𝐸
1

𝑚
σ𝑖=1
𝑚 𝑌 𝑖 − 𝑦

2
= 𝐸

1

𝑚
σ𝑖=1
𝑚 𝑌 𝑖 − 𝑦

2
=

1

𝑚2
σ𝑖=1
𝑚 𝜎2(𝑌 𝑖 ) =

1

𝑚
𝜎2 𝑌 𝑖 =

1

𝑚
𝜎2, 

where 𝜎2 = 𝜎2(𝑌 𝑖 ) for all 𝑖 = 1,… ,𝑚

• The variance (the expected error) of 𝑍 shrinks with 𝑚
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Proof of Convergence

• If we drop the second assumption 

• Assumptions 

• 𝑌 1 , 𝑌 2 , … , 𝑌 𝑚 are iid (independent, identically distributed)

• 𝐸 𝑌 = 𝑦 (𝐸 𝑌 is an unbiased estimator of 𝑦)

𝐸 𝑌 − 𝑦 2 = 𝐸 𝑌 − 𝐸 𝑌 + 𝐸 𝑌 − 𝑦 2

𝐸 𝑌 − 𝑦 2 = 𝐸 𝑌 − 𝐸 𝑌 2 + 𝐸 𝐸 𝑌 − 𝑦 2 + 𝐸 2 𝑌 − 𝐸 𝑌 𝐸 𝑌 − 𝑦

𝜎2 𝑌 ≥ 0 𝐸 𝑌 − 𝐸 𝑌 𝐸 2 𝐸 𝑌 − 𝑦

𝐸 𝑌 − 𝑦 2 ≥ 𝐸 𝐸 𝑌 − 𝑦 2

𝐸 𝑌 − 𝑦 2 ≥ 𝐸 𝑍 − 𝑦 2

• using Z gives us a smaller error (even if we can’t prove convergence 

to zero)
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Properties

• Instability is good 

• The more variable (unstable) the form of 𝜑(𝑥, 𝑆) is, the more 

improvement can potentially be obtained 

• Low-variability methods (e.g. PCA, LDA) improve less than high-
variability ones (e.g. Decision Trees)

• Loads of redundancy

• Most predictors do roughly “the same thing”
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From Bagging to Boosting

• Bagging: each model is trained independently 

• Boosting: each model is built on top of the previous ones

• Avoid redundancy: each learner complements the previous ones

• Weak learner WL:

• A learning algorithm 𝒜 is a -weak-learner for a class of 
hypotheses ℋ if there exists a function 𝑚ℋ: 0; 1 → ℕ such that 
for every (0; 1), for every distribution 𝒟 over 𝒳, and for every 
labeling function 𝑓 ∶ 𝒳 → {−1,+1}, if there exists a hypothesis 
from ℋ with zero error with respect to 𝑓 and 𝒟, then when 
running the learning algorithm on 𝑚 > 𝑚ℋ(𝛿) i.i.d. examples 
generated by 𝒟 and labeled by 𝑓, the algorithm returns a 
hypothesis ℎ such that, with probability of at least 1 − , the 
error of ℎ (with respect to 𝒟 and 𝑓) is at most ½−  .
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Weak learner

• A learning algorithm 𝒜 is a -weak-learner for a class of hypotheses ℋ if 
there exists a function 𝑚ℋ: 0; 1 → ℕ such that for every (0; 1), for 
every distribution 𝒟 over 𝒳, and for every labeling function 𝑓 ∶ 𝒳 →
{−1,+1}, if there exists a hypothesis from ℋ with zero error with respect to 
𝑓 and 𝒟, then when running the learning algorithm on 𝑚 > 𝑚ℋ(𝛿) i.i.d. 
examples generated by 𝒟 and labeled by 𝑓, the algorithm returns a 
hypothesis ℎ such that, with probability of at least 1 − , the error of ℎ
(with respect to 𝒟 and 𝑓) is at most ½−  .

• Providing classification accuracy > 1 −
1

2
− 𝛾 =

1

2
+ 𝛾

• With probability > 1 − 𝛿

• For some fixed and uncontrollable 

• classification error ½− 

• 𝛿 <
1

2

• And this on an arbitrary distribution of data entries
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Decision Stumps

• Let 𝒳 = ℝ𝑑 and ℋ is the set of decision stumps

ℋ = ℋ𝐷𝑆 = 𝑥 → sign 𝑥𝑗 − 𝜃 ⋅ 𝑏; 𝜃 ∈ ℝ, 𝑗 ∈ 1,… , 𝑑 , 𝑏 ∈ ±1

• A decision stump ℎ is parameterized by a dimension 𝑗 and a threshold 𝜃

• Learning decision stump ℎ 𝑥 = 𝑠𝑖𝑔𝑛 𝑥𝑗 − 𝜃 ⋅ 𝑏

• Input: training set 𝑆 = 𝑥1, 𝑦1 , … , 𝑥𝑁 , 𝑦𝑁
distribution vector 𝐷 = (𝐷1, … , 𝐷𝑁)

• Goal: find 𝑏∗, 𝑗∗, 𝜃∗ solving

min
𝑏∈ ±1

min
𝑗∈ 1,…,𝑑

min
𝜃∈ℝ

෍

𝑖;𝑦𝑖=1

𝐷𝑖𝟏 ℎ 𝑥𝑖,𝑗 =−1 + ෍

𝑖;𝑦𝑖=−1

𝐷𝑖𝟏 ℎ(𝑥𝑖,𝑗)=1

• Learning decision stump is possible in time 𝑂(𝑑𝑁) – how?

• Can be used as weak learner
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Probabilities of samples 𝑥1, … , 𝑥𝑁



Learning Decision Stump 

• Goal: find 𝑏∗, 𝑗∗, 𝜃∗ solving

min
𝑏∈ ±1

min
𝑗∈ 1,…,𝑑

min
𝜃∈ℝ

෍

𝑖;𝑦𝑖=1

𝐷𝑖𝟏 ℎ 𝑥𝑖,𝑗 =−1 + ෍

𝑖;𝑦𝑖=−1

𝐷𝑖𝟏 ℎ(𝑥𝑖,𝑗)=1

• Fix 𝑏 and 𝑗; w.l.o.g. let 𝑏 = +1

• Sort training samples according to their 𝑗-th coordinate so that
𝑥1,𝑗 ≤ 𝑥2,𝑗 ≤ ⋯ ≤ 𝑥𝑁,𝑗

• Define Θ𝑗 =
𝑥𝑖,𝑗+𝑥𝑖+1,𝑗

2
; 𝑖 ∈ 1,… ,𝑁 ∪ 𝑥1,𝑗 − 1 , 𝑥𝑁,𝑗 + 1

• Instead of minimizing over 𝜃 ∈ ℝ, minimize over 𝜃 ∈ Θ𝑗

• Use that the samples are sorted according to 𝑗-th coordinate

• Time 𝑂(𝑑𝑁)
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Adaptive Boosting
Adaboost

input: [Freund and Schapire, 1997]
training set 𝑆 = {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)}
weak learner WL(𝐷, 𝑆)
number of rounds 𝑇

Initialize 𝐷 1 = (1/𝑁,… , 1/𝑁)
For 𝑡 = 1,… , 𝑇

Invoke weak learner ℎ𝑡 = WL(𝐷 𝑡 , 𝑆)

Compute its error 𝜀𝑡 = σ𝑖=1
𝑁 𝐷𝑖

𝑡
𝟏 𝑦𝑖≠ℎ𝑡 𝑥𝑖 and 

weight 𝛼𝑡 =
1

2
ln

1

𝜀𝑡
− 1

Update 𝐷

𝐷𝑖
𝑡+1

=
𝐷𝑡

𝑡
𝑒−𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝐷𝑗

𝑡
𝑒−𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗

Output the hypothesis ℎ𝑆 = sign (σ𝑡=1
𝑇 𝛼𝑡ℎ𝑡 𝑥 )
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Positive for 
error < 0.5



AdaBoost

• Distributions 𝐷 𝑡 over training samples:

• Originally uniform

• At each round, the weight of a misclassified example is 
increased

• Let 𝑓𝑡 = σ𝑝=1
𝑡 𝛼𝑝ℎ𝑝

• Observation: 𝐷𝑖
𝑡+1

=
𝑒−𝑦𝑖𝑓𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝑒

−𝑦𝑗𝑓𝑡 𝑥𝑗
since

𝐷𝑖
𝑡+1

=
𝐷𝑖

𝑡
𝑒−𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝐷𝑗

𝑡
𝑒−𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗

=
𝐷𝑖

𝑡−1
𝑒−𝛼𝑡−1𝑦𝑖ℎ𝑡−1 𝑥𝑖 𝑒−𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝐷𝑗

𝑡−1
𝑒−𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗 𝑒−𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗

= ⋯

=

1
𝑁
𝑒−𝑦𝑖 σ𝑝=1

𝑡 𝛼𝑝ℎ𝑝 𝑥𝑖

σ𝑗=1
𝑁 1

𝑁
𝑒−𝑦𝑗 σ𝑝=1

𝑡 𝛼𝑝ℎ𝑝 𝑥𝑗
=

𝑒−𝑦𝑖𝑓𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝑒−𝑦𝑗𝑓𝑡 𝑥𝑗
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AdaBoost

• The weight 𝛼𝑡 assigned to base classifier ℎ𝑡 directly depends on the 
accuracy of ℎ𝑡 at round 𝑡

Theorem:

• Let 𝑆 be a training set and assume that at each iteration of 

AdaBoost, the weak learner returns a hypothesis for which 
𝑡 < ½− . Then, the training error of the output hypothesis of 

AdaBoost is at most

𝐿𝑆 ℎ𝑆 =
1

𝑁
෍

𝑖=1

𝑁

1 ℎ𝑆 𝑥𝑖 ≠𝑦𝑖 ≤ 𝑒−2𝛾
2𝑇
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Toy Example
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‒+
+

Weak classifiers: decision stumps (horizontal and vertical 
half-planes)



Toy Example
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+

+

+

‒

‒

‒

‒

‒+
+

Weak classifiers: decision stumps (horizontal and vertical 
half-planes)

𝐷1 =
1

10
,⋯ ,

1

10

𝜀1 =
3

10
= 0.3

𝛼1 = 0.42

+

+

+

‒

‒

‒

‒

‒+
+

𝐷𝑖
𝑡+1 =

𝐷𝑡
𝑡
𝑒−𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝐷𝑗

𝑡 𝑒−𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗

𝜀𝑡 =෍

𝑖=1

𝑁

𝐷𝑖
𝑡 𝟏 𝑦𝑖≠ℎ𝑡 𝑥𝑖

𝛼𝑡 =
1

2
ln

1

𝜀𝑡
− 1

𝐷 𝑡 = 0.17

𝐷 𝑡 = 0.05



Toy Example
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Weak classifiers: decision stumps (horizontal and vertical 
half-planes)

𝐷2 = 0.05,⋯ , 0.17,⋯
𝜀2 = 0.21
𝛼2 = 0.65

+
+

+

‒

‒

‒

‒

‒+ +

𝐷𝑖
𝑡+1 =

𝐷𝑡
𝑡
𝑒−𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

σ𝑗=1
𝑁 𝐷𝑗

𝑡 𝑒−𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗

𝜀𝑡 =෍

𝑖=1

𝑁

𝐷𝑖
𝑡 𝟏 𝑦𝑖≠ℎ𝑡 𝑥𝑖

𝛼𝑡 =
1

2
ln

1

𝜀𝑡
− 1

+
+

+

‒

‒
‒

‒

‒+ +

𝜀3 = 0.14
𝛼3 = 0.92
𝐷3 = (⋯)



Toy Example
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Advantages

• Simple and easy to implement

• Flexible – can combine with any learning algorithm

• No requirement on data metric – data features don’t need to be 
normalized, like in kNN and SVMs (this has been a central problem in 
machine learning)

• Feature selection and fusion are naturally combined with the same 
goal for minimizing an objective error function

• Non-parametric – no parameters to tune (maybe 𝑇)

• No prior knowledge needed about weak learner

• Provably effective

• Versatile – can be applied on a wide variety of problems
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Caveats

• Performance of AdaBoost depends on data and weak learner

• Consistent with theory, AdaBoost can fail if

• weak classifier too complex – overfitting

• weak classifier too weak – underfitting

• Empirically, AdaBoost seems especially susceptible to uniform noise
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Random Forests
Breiman 2001

• Combine tree predictors by voting 

• Let us consider CART (classification and regression tree)

• We use bootstrapped replicates of the original dataset

• At each node, 𝑚 = 𝑝 candidate splitting variables are chosen 

uniformly at random out of the 𝑝 features available

• All cut-off values are examined for all of the 𝑚 variables

• The GINI impurity score is computed for each case and the 

(variable, cutoff) pair that empirically minimizes the score is 
selected

• The procedure continues recursively until a node is pure (w.r.t. the 
target)

Machine Learning in Bioinformatics 32May 16, 2019



GINI Impurity Score
Interpretation

• GINI – a measure of how often a randomly chosen element from the set 
would be incorrectly labeled if it were randomly labeled according to the 
distribution of labels in the subset

• It can be computed by summing the probability of each item being chosen 
times the probability of being mistaken in choosing that label for 
categorizing that item

• It reaches its minimum (zero) when all cases in the set fall into a single 
category

• Let 𝑓𝑖 be the fraction of items in a set labeled with label 𝑖 ∈ {1,2, … ,𝑚}, 
then:

Gini 𝑓 =෍

𝑖=1

𝑚

𝑓𝑖(1 − 𝑓𝑖) =෍

𝑖=1

𝑚

𝑓𝑖 − 𝑓𝑖
2 =෍

𝑖=1

𝑚

𝑓𝑖 −෍

𝑖=1

𝑚

𝑓𝑖
2 = 1 −෍

𝑖=1

𝑚

𝑓𝑖
2
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Probability that an element 
with label 𝑖 is selected 

Probability that an element with label 
𝑖 is wrongly labeled



Random Forest 
Randomization

• Different types of random forests (RF) can be obtained by changing 
the source of randomization

1. on training set: bootstrapped replicates

2. on outputs: flipped for classification, with added Gaussian 
noise for regression

3. on split: select randomly one from 𝑆 best splits on all features

4. on feature selection: select 𝑚 features at random on each 

node and then find the best split

5. on subspace: select 𝑚 features at random for the whole 

decision tree

6. on all: on each node select two instances of opposite class at 
random, select a feature at random, select a split point at 
random
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Random Forest Key 
Points

• One key notion in RF is that of margin, i.e. the difference between 
the average vote for the true class and the highest average vote for 
any other class

• It can be shown that RF do not over-fit as more trees are added, 
but rather converge to the limiting value of the generalization error

• Moreover, given the set of decision trees, the error is bound by their 
strength (i.e. the expected margin) and inversely by their mean 
correlation

➢ large strength and low correlation → good generalization

• These results explain the reason behind the randomization 
procedures: to encourage a low correlation between predictors
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Random Forest Key 
Points

• RF has better prediction accuracy as it smooths the hard cut 
decision boundaries (compared to a single decision tree)

⇒ it reduces variance

• The random selection of splitting variables allows weaker variables 
to be considered

⇒ interaction effects can be revealed with other variables that 

would have been otherwise overshadowed
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Variable Importance (VI)

• Given an induced RF, one can rank the importance of each feature 
according to:

1. Gini Score: at each split, the decrease in Gini impurity for the 
variable chosen for splitting is recorded; the importance of a 
variable is its average Gini impurity decrease (averaged over all 
the trees in the forest)

Gini 𝑓 = 1 −෍

𝑖=1

𝑚

𝑓𝑖
2

1. OOB Accuracy: the importance is defined as the mean decrease 
in accuracy averaged over the bootstrapped validation replicates
• Given that bootstrapped replicates are used to induce each decision 

tree, one can use the remaining 30% of data called out-of-bag (OOB), 
as validation set (no need to run an external cross-validation)

• We call it the Permutation Variable Importance Estimate ⇒ see the next 
slide
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Permutation VI Estimate

• For each bootstrapped replicate

• Identify the OOB instances

• Predict the class membership and cumulate the correct 
prediction counts

• For each feature 𝑗 ∈ {1,2, … , 𝑑}

• permute the values of 𝐱𝑗 in the OOB sample

• use the learned decision tree to make predictions

• cumulate the correct prediction counts

• the importance for variable 𝑗 is the average difference in 
accuracy on the OOB between the original setting vs. the 
permuted case
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Permutation VI Estimate

• The permutation VI can be used in a backward elimination loop for 
increased reliability:

• Compute the importance of each feature on the full dataset

• Remove a fixed percentage of the low scoring features (say 10-
20%)

• Iterate the training and VI estimate until only one predictor is 
left

This procedure allows to find a nested set of variables and as a 
consequence a more robust variable ranking

• ...or, iterate until the out-of-bag error is within one standard 
deviation from the minimum out-of-bag error estimate
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Permutation VI Estimate

• Rational for the Permutation VI Estimate:

• When we randomly permute a predictor variable, its original 
association with the target is lost

• We then use the permuted variable, together with the remaining 
non-permuted predictor variables, to predict the target

• In this case, the prediction accuracy is likely to decrease 
substantially if the original variable was associated with the 
response
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Remarks on VI Estimates in 
general

• Gini Impurity Score is affected by multiple testing effects and has 

been shown to be biased when variables vary in their number of 
categories or scale of measurement (variables with more categories 
are preferred because multiple testing is not corrected for)

• The permutation importance is reliable when sub-sampling without 
replacement (instead of bootstrap sampling) is used

• The performance of VI measures may not be reliable when variables 
are correlated: random forests show a preference for correlated 
variables
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Remarks on VI Estimates in 
general

• The performance of VI measures may not be reliable when variables 
are correlated: random forests show a preference for correlated 
variables

• To remove this bias, one can permute the values of the selected 
feature only within the intervals that result from the partition made 
by all the other cut-offs choices in the decision tree* for all the 
variables that are related (e.g. use the correlation coefficient)

• The idea is that VI really estimates the independence of a variable 
from the target AND from the other variables – if there exist 
correlated variables this is not true and the resulting indication is an 
overestimate

___________________________
* Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008).  
Conditional variable importance for random forests. BMC bioinformatics
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Remarks on VI Estimates in 
general

• Variable importance ∝ the loss of accuracy (caused by randomly 

permuting attribute values between objects)

• computed separately for all trees in RF, averaged and standard 
deviation of the accuracy loss is computed. Alternatively, the Z-score 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠𝑠

𝑠𝑡𝑑(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠𝑠)
can be used as the importance measure. 

• unfortunately, the Z score cannot measure the statistical significance 
of the feature importance in RF, since its distribution is not 𝒩(0; 1)
[Rudnicki, Kierczak, Koronacki, and Komorowski 2006].

• we need something to decide whether the VI of a given attribute is 
significant, i.e. distinguishable from importance obtained by random 
fluctuations
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Boruta algorithm

1. Add shadow variables as copies of all variables (always at least 5 
shadow attributes) and randomly shuffle values of each shadow 
variable

2. Run a RF classifier on the extended set of attributes and compute the 
Z-scores for all variables.

3. Find the maximum Z-score among shadow attributes (MZSA), and 
then assign a hit to every attribute that scored better than MZSA.

4. For each attribute with undetermined importance perform a two-sided 
test of equality with the MZSA.

• Deem the attributes which have importance significantly lower than 
MZSA as ‘unimportant’ and permanently remove them

• Deem the attributes which have importance significantly higher than 
MZSA as ‘important’.

• Remove all shadow attributes.
• Repeat the procedure until the importance is assigned for all the 

attributes, or the algorithm has reached the previously set limit of the 
random forest runs.

Machine Learning in Bioinformatics 44May 16, 2019

Boruta comes from the 
mythological Slavic figure 

that embodies the spirit of 
the forest.



Z-score used in Boruta 
Algorithm

• The importance measure of an attribute = the loss of accuracy of 
classification caused by the random permutation of attribute values 
between objects. 

• It is computed separately for all trees in the forest which use a given 
attribute for classification. 

• Then the average and standard deviation of the accuracy loss are 
computed. 

• Alternatively, the Z score computed by dividing the average loss by its 
standard deviation can be used as the importance measure.

• The Z score is not directly related to the statistical significance of the 
feature importance returned by the random forest algorithm, since its 
distribution is not 𝒩(0, 1) [Rudnicki, Kierczak, Koronacki, and 
Komorowski 2006]. 

• Nevertheless, in Boruta Z score is used as the importance measure 
since it takes into account the fluctuations of the mean accuracy loss 
among trees in the forest.



Conditional Variable 
Importance

• Use a conditional permutation scheme, where 𝑥𝑗 is permuted only 

within groups of observations with 𝑍 = 𝑧, to preserve the correlation 
structure between 𝑥𝑗 and the other predictor variables
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Experimental Results

• Dataset of 𝑁 = 300 amino acid sequences described by 13 properties 
for each amino acid in each of 8 specific positions (𝑝 = 104) for a 
classification task (binding)

• The VI of h2y8 seems higher than that of pol3 however the VI of h2y8 
is over-estimated by the unconditional approach since it is highly 
correlated with another important variable (the one marked with *); the 
rank is corrected in the conditional permutation scheme
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