## MACHINE LEARNING IN BIOINFORMATICS

## Part 7: Hidden Markov Models

## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Dinucleotide frequency CG-Islands



- Consider all 2-mers in a sequence \{AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT\}
- Given 4 nucleotides: each with probability of occurrence $\sim \frac{1}{4}$. Thus, expected probability of occurrence of a dinucleotide is $\sim \frac{1}{16}$.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, frequency of CG is typically $<\frac{1}{16}$


## Example



- From a 291829 base sequence

| frequency |  | frequency |  |
| :--- | :--- | :--- | :--- |
| AA | 0.120214646984 | GA | 0.056108392614 |
| AC | 0.055409350713 | GC | 0.037792809463 |
| AG | 0.068848773935 | GG | 0.043357731266 |
| AT | 0.083425853585 | GT | 0.046828954041 |
| CA | 0.074369148950 | TA | 0.077206436668 |
| CC | 0.044927148868 | TC | 0.056207766218 |
| CG | 0.008179475581 | TG | 0.063698479926 |
| CT | 0.066857875186 | TT | 0.096567155996 |

- Expected value 0.0625
- The frequency of CG is 7 times smaller than expected


## Why -Islands?



- CG is the least frequent dinucleotide because C in CG is easily methylated (that is, an H -atom is replaced by a $\mathrm{CH}_{3}{ }^{-}$ group) and the methyl-C has the tendency to mutate into $T$ afterwards
- However, the methylation is suppressed around genes and transcription factor regions in a genome. So, CG appears at relatively higher frequency within these important areas called CG-islands
- Finding the CG islands within a genome is among the most reliable gene finding approaches
- Classical definition: A CG island is DNA sequence of length about 200bp with a C+G content of $50 \%$ and a ratio of observed-to-expected number of CG's that is above 0.6. (Gardiner-Garden \& Frommer, 1987)


## Problems



1. Discrimination problem: Given a short segment of genomic sequence. How can we decide whether this segment comes from a CG-island or not?
$\longrightarrow$ Markov Model
2. Localization problem: Given a long segment of genomic sequence. How can we find all contained CG-islands?
$\longrightarrow$ Hidden Markov Model

## Markov Model

Definition: A (time-homogeneous) Markov model (of order 1) is a system $M=$ $(Q, A)$ consisting of
$Q=\left\{s_{1}, \ldots, s_{k}\right\}$ : a finite set of states and $A=\left(a_{k l}\right): \mathbf{a}|Q| \times|Q|$ matrix of probability of changing from state $s_{k}$ to state $s_{l} . P\left(x_{i+1}=s_{l}, x_{i}=s_{k}\right)=a_{k l}$ with $\sum_{l \in S} a_{k l}=1$ for all $k \in S$.

Definition: A Markov chain is a chain $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ of random variables, which take states in the state set $Q$ such that

$$
P\left(x_{n}=s \mid \cap_{j<n} x_{j}\right)=P\left(x_{n}=s \mid x_{n-1}\right) \text { is true for all } n>0 \text { and } s \in S .
$$

Definition: A Markov chain is called homogeneous, if the probabilities are not dependent on $n$. (At any time $i$ the chain is in a specific state $x_{i}$ and at the tick of a clock the chain changes to state $x_{j}$ according to the given transition probabilities.)

## Example



- Weather in Prague, daily at midday:
- Possible states are rain, sun or clouds.
- Transition probabilities:

|  | $r$ | $s$ | $c$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{r}$ | 0.2 | 0.3 | 0.5 |
| $\mathbf{s}$ | 0.2 | 0.6 | 0.2 |
| $\mathbf{c}$ | 0.3 | 0.3 | 0.4 |

- A Markov chain would be the observation of the weather:
...rrrrrrccsssssscscscccrrcressss...
- Types of questions that the model can answer:

1. If it is sunny today, what is the probability that the sun will shine for the next seven days?
2. How large is the probability, that it will rain for a month?

## Modeling the begin and end states



- We must specify the initialization of the chain - an initial probability $P\left(x_{1}\right)$ of starting in a particular state. We can add a begin state to the model that is labeled 'Begin' and add this to the states set. We will always assume that $x_{0}=$ Begin holds. Then the probability of the first state in the Markov chain is

$$
P\left(x_{1}=s\right)=a_{\text {Begin }, s}=P(s),
$$

where $P(s)$ denotes the background probability of state $s$.

- Similarly, we explicitly model the end of the sequence using an end state 'End'. Thus, the probability that we end in state $t$ is

$$
P\left(E n d \mid x_{n}=t\right)=a_{t, E n d} .
$$

## Probability of Markov chains



- Given a sequence of states $\boldsymbol{x}=x_{1}, x_{2}, x_{3}, \ldots, x_{L}$. What is the probability that a Markov chain will step through precisely this sequence of states?

$$
\begin{aligned}
P(x) & =P\left(x_{L}, x_{L-1}, \ldots, x_{1}\right) \\
& =P\left(x_{L} \mid x_{L-1}, \ldots, x_{1}\right) P\left(x_{L-1} \mid x_{L-2}, \ldots, x_{1}\right) \ldots P\left(x_{1}\right)
\end{aligned}
$$

[by repeated application of $P(X, Y)=P(X \mid Y) P(Y)$ ]

$$
\begin{aligned}
& =P\left(x_{L} \mid x_{L-1}\right) P\left(x_{L-1} \mid x_{L-2}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =P\left(x_{1}\right) \prod_{i=2}^{L} a_{x_{i-1}, x_{i}}=\prod_{i=1} a_{x_{i-1}, x_{i}}
\end{aligned}
$$



$$
\text { If } x_{0}=\text { Begin }
$$

## Example



```
- # Markov chain that generates CpG islands
- # (Source: DEKM98, p 50)
- # Number of states:
- 6
- # State labels (*=Begin, +=End):
- A C G T * +
- # Transition matrix:
- 0.1795 0.2735 0.4255 0.1195 0 0.002
- 0.1705 0.3665 0.2735 0.1875 0 0.002
\bullet 0.1605 0.3385 0.3745 0.1245 0 0.002
- 0.0785 0.3545 0.3835 0.1815 0 0.002
- 0.2495 0.2495 0.2495 0.2495 0 0.002
- 0.0000 0.0000 0.0000 0.0000 0 1.000
```

Transition matrices are generally calculated from training sets.

- In our case the transition matrix $\mathbf{P}^{+}$for a DNA sequence that comes from a CG-island, is determined as follows:

$$
p_{s t}^{+}=\frac{c_{s t}^{+}}{\sum_{t^{\prime}} c_{s t^{\prime}}^{+}}
$$

- where $c_{s t}$ is the number of positions in a training set of CG-islands at which the state $s$ is followed by the state $t$.


## Markov chains for CGislands and non CG-islands



## Solving Problem 1 discrimination



- Given a short sequence $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{L}\right)$. Does it come from a CG-island (model ${ }^{+}$)?

$$
P\left(\boldsymbol{x} \mid \text { model }^{+}\right)=\prod_{i=1}^{L} a_{x_{i-1, i} x_{i}}^{+}
$$

- Or does it not come from a non-CG-island ( model $^{-}$)?

$$
P\left(\boldsymbol{x} \mid \text { model }^{-}\right)=\prod_{i=1}^{L} a_{x_{i-1, i} x_{i}}^{-}
$$

- We calculate the log-odds ratio

$$
S(\boldsymbol{x})=\log \frac{P\left(\boldsymbol{x} \mid \text { model }^{+}\right)}{P\left(\boldsymbol{x} \mid \text { model }^{-}\right)}=\sum_{i=1}^{L} \log \left(\frac{a_{x_{i-1}, x_{i}}^{+}}{a_{x_{i-1}, x_{i}}^{-}}\right)=\sum_{i=1}^{L} \beta_{x_{i-1}, x_{i}}
$$

with $\beta_{X Y}$ being the log likelihood ratios of corresponding transition probabilities. For the transition matrices above we calculate for example $\beta_{A A}=\log (0.18 / 0.3)$. Often the base $2 \log$ is used, in which case the unit is in bits.

## Solving Problem 1 discrimination cont



- If model ${ }^{+}$and model ${ }^{-}$differ substantially then a typical CG-island should have a higher probability within the model ${ }^{+}$than in the model ${ }^{-}$. The log-odds ratio should become positive.
- Generally we could use a threshold value $c^{*}$ and a test function to determine whether a sequence $x$ comes from a CG-island:

$$
\phi^{*}(x):= \begin{cases}1 & \text { if } S(x)>c^{*} \\ 0 & \text { if } S(x) \leq c^{*}\end{cases}
$$

where $\phi^{*}(x)=1$ indicates that $x$ comes from a CG-island.

- Such a test is called Neyman-Pearson-Test.


## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Islands and the "Fair

## Bet Casino"

- The problem of localisations of CG-islands can be modeled after a problem named "The Fair Bet Casino"
- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability $\frac{1}{2}$.
- The Biased coin will give Heads with prob. $\frac{3}{4}$.
- Thus, we define the probabilities:
$-P(H \mid F)=P(T \mid F)=\frac{1}{2}$
$-P(H \mid B)=\frac{3}{4}, \quad P(T \mid B)=\frac{1}{4}$
- The crooked dealer changes between Fair and Biased coins with probability $10 \%$


## The Fair Bet Casino Problem



- Input: A sequence $\boldsymbol{x}=x_{1} x_{2} x_{3} \ldots x_{n}$ of coin tosses made by two possible coins ( $\mathbf{F}$ or $\mathbf{B}$ ).
- Output: A sequence $\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n}$, with each $\pi_{i}$ being either F or B indicating that $x_{i}$ is the result of tossing the Fair or Biased coin respectively.

Fair Bet Casino Problem
Any observed outcome of coin tosses could have been generated by any sequence of states!
= III formulated problem!

Need to incorporate a way to grade different sequences differently.


Decoding Problem

## $\mathrm{P}(\mathbf{x} \mid$ fair coin $)$ vs. $\mathrm{P}(\mathbf{x} \mid$ biased coin $)$



- Suppose first that dealer never changes coins. Some definitions:
- $\quad P(x \mid$ fair coin $):$ probability of the dealer using the F coin and generating the outcome $\boldsymbol{x}$.
- $P(x \mid$ biased coin $)$ : prob. of the dealer using the B coin and generating outcome $x$.


## $\mathrm{P}(\mathbf{x} \mid$ fair coin $) \mathrm{VS}$. $\mathrm{P}(\mathbf{x} \mid$ biased coin $)$



$$
\begin{aligned}
\mathrm{P}(x \mid \text { fair coin }) & =\mathrm{P}\left(x_{1} \cdots x_{n} \mid \text { fair coin }\right) \\
& =\prod_{i=1}^{n} p\left(x_{i} \mid \text { fair coin }\right)=\left(\frac{1}{2}\right)^{n} \\
\mathrm{P}(x \mid \text { biased coin }) & =\mathrm{P}\left(x_{1} \cdots x_{n} \mid \text { biased coin }\right) \\
& =\prod_{i=1}^{n} p\left(x_{i} \mid \text { biased coin }\right)=\left(\frac{3}{4}\right)^{k}\left(\frac{1}{4}\right)^{n-k}
\end{aligned}
$$

$k$ - the number of Heads in $x$.

## $P(\boldsymbol{x} \mid$ fair coin $)$ vs. $P(x \mid$ biased coin $)$

$$
\begin{aligned}
P(x \mid \text { fair coin }) & =P(x \mid \text { biased coin }) \\
\left(\frac{1}{2}\right)^{n} & =\frac{3^{k}}{4^{n}} \\
2^{n} & =3^{k} \\
n & =k \log _{2} 3
\end{aligned}
$$

- when $k<n / \log _{2} 3 \quad(k \sim 0.67 n)$, the dealer most likely used the fair coin
- when $k>n / \log _{2} 3$, he most likely used the biased coin


## Computing Log-odds Ratio in Sliding Windows

$$
x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \ldots x_{n}
$$

Consider a sliding window of the outcome sequence. Find the logodds for this short window.

$$
\begin{aligned}
& \log _{2} \frac{P(\text { window } \mid \text { fair coin })}{P(\text { windows } \mid \text { biased coin })} \\
& 0
\end{aligned}
$$

Log-odds value

## Biased coin most likely Fair coin most likely used <br> used

Disadvantages:

- the length of CG-island is not known in advance
- different windows may classify the same position differently


## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Hidden Markov Model (HMM)



- Can be viewed as an abstract machine with $k$ hidden states that emits symbols from an alphabet $\Sigma$.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
- What state should I move to next?
- What symbol - from the alphabet $\Sigma$ - should I emit?
- Observer can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols

HHHTHTHHTTTTHTHTHTHHHTHTHTHT
BBBFFFFFFFFFFFFFFFFFFFBBBFFFFF?

## HMM Parameters $M\left(Q,{ }_{2}, A, E\right)$

$\Sigma: \quad a \operatorname{set}$ of emission characters.

$$
\begin{aligned}
& \text { Ex.: } \Sigma=\{H, T\} \text { for coin tossing } \\
& \Sigma=\{1,2,3,4,5,6\} \text { for dice tossing }
\end{aligned}
$$

Q: a set of hidden states, each emitting symbols from $\Sigma$. $Q=\{F, B\}$ for coin tossing
$A=\left(a_{k l}\right):$ a $|Q| \times|Q|$ matrix of probability of changing from state $k$ to state $l$.

$$
\begin{array}{ll}
a_{F F}=0.9 & a_{F B}=0.1 \\
a_{B F}=0.1 & a_{B B}=0.9
\end{array}
$$

$E=\left(e_{k}(b)\right):$ a $|Q| \times|\Sigma|$ matrix of probability of emitting symbol $b$ while being in state $k$.
$e_{F}(0)=1 / 2$
$e_{F}(1)=1 / 2$
$0=$ Tail
$e_{B}(0)=1 / 4 \quad e_{B}(1)=3 / 4$
1 = Head

## HMM for Fair Bet Casino

- The Fair Bet Casino in HMM terms:
$\Sigma=\{0,1\}$ (0 for Tails and 1 Heads)
$Q=\{F, B\}-F$ for Fair \& $B$ for Biased coin.

Transition Probabilities $A$

|  | Fair | Biased |
| :--- | :--- | :--- |
| Fair | $a_{F F}=0.9$ | $a_{F B}=0.1$ |
| Biased | $a_{B F}=0.1$ | $a_{B B}=0.9$ |


|  | Tails(0) | Heads(1) |
| :--- | :--- | :--- |
| Fair | $e_{F}(0)=1 / 2$ | $e_{F}(1)=1 / 2$ |
| Biased | $e_{B}(0)=1 / 4$ | $e_{B}(1)=3 / 4$ |

## HMM for Fair Bet Casino

 (cont'd)

HMM model for the Fair Bet Casino Problem

## Hidden Paths



- A path $\pi=\pi_{1} \ldots \pi_{n}$ in the HMM is defined as a sequence of states.
- Consider path $\pi=$ FFFBBBBBFFF and
sequence $\boldsymbol{x}=01011101001$


Transition probability from state $\pi_{i-1}$ to state $\pi_{i}$

## Calculation

- $\quad P(x \mid \pi)$ : Probability that the sequence $\boldsymbol{x}=x_{1} x_{2} \ldots x_{n}$ was generated by the path $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ :

$$
\begin{aligned}
P(\boldsymbol{x} \mid \boldsymbol{\pi}) & =P\left(\pi_{1}\right) P\left(x_{1} \mid \pi_{1}\right) P\left(\pi_{1} \rightarrow \pi_{2}\right) P\left(x_{2} \mid \pi_{2}\right) \cdots \\
& P\left(x_{n-1} \mid \pi_{n-1}\right) P\left(\pi_{n-1} \rightarrow \pi_{n}\right) P\left(x_{n} \mid \pi_{n}\right)= \\
& =P\left(\pi_{0} \rightarrow \pi_{1}\right) P\left(x_{1} \mid \pi_{1}\right) P\left(\pi_{1} \rightarrow \pi_{2}\right) P\left(x_{2} \mid \pi_{2}\right) \cdots \\
& P\left(x_{n-1} \mid \pi_{n-1}\right) P\left(\pi_{n-1} \rightarrow \pi_{n}\right) P\left(x_{n} \mid \pi_{n}\right)= \\
& =\prod_{i=1}^{n} P\left(\pi_{i-1} \rightarrow \pi_{i}\right) \cdot P\left(x_{i} \mid \pi_{i}\right) \\
& =\prod_{i=1}^{n} a_{\pi_{i-1}, \pi_{i}} \cdot e_{\pi_{i}}\left(x_{i}\right)
\end{aligned} \quad \begin{aligned}
& \\
& \pi_{0}=\text { begin } \\
& n+1 \pi_{n+1}=\text { end }
\end{aligned}
$$

## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Decoding Problem

- Goall: Find an optimal hidden path of states given observations.
- Input: Sequence of observations $x=x_{1} \ldots x_{n}$ generated by an HMM $M(\Sigma, Q, A, E)$
- Output: A path that maximizes $P(\boldsymbol{x} \mid \boldsymbol{\pi})$ over all possible paths $\boldsymbol{\pi}$. $\Longrightarrow$ Solves Problem 2-localization


## Building Manhattan for Decoding Problem

- Andrew Viterbi used the Manhattan grid model to solve the Decoding Problem.
- Every choice of $\pi=\pi_{1} \ldots \pi_{n}$ corresponds to a path in a graph.
- The only valid direction in the graph is eastward.
- This graph has $|Q|^{2}(n-1)$ edges.


## Edit Graph for Decoding Problem



## Decoding Problem vs. Alignment Problem



## Decoding Problem as Finding a Longest Path in a DAG

- The Decoding Problem is reduced to finding a longest path in the directed acyclic graph (DAG) above.
- Notes: the length of the path is defined as the product of its edges' weights, not the sum.
- Every path in the graph has the probability $P(\boldsymbol{x} \mid \boldsymbol{\pi})$.
- The Viterbi algorithm finds the path that maximizes $P(\boldsymbol{x} \mid \boldsymbol{\pi})$ among all possible paths.
- The Viterbi algorithm runs in $O\left(n|Q|^{2}\right)$ time.


# Decoding Problem: weights of edges 



The weight $w$ is given by:
???

## Decoding Problem: weights of edges



The weight $w$ is given by:

## Decoding Problem: weights of edges

$$
i \text {-th term }=a_{\pi_{i-1}, \pi_{i}} \cdot e_{\pi_{i}}\left(x_{i}\right)
$$



The weight $w$ is given by:
?
Each weight is a factor in the product

## Decoding Problem: weights of edges

$$
i \text {-th term }=a_{\pi_{i-1}, \pi_{i}} \cdot e_{\pi_{i}}\left(x_{i}\right)=a_{k, l} \cdot e_{\pi_{i}}\left(x_{i}\right) \text { for } \pi_{i-1}=k, \pi_{i}=l
$$



The weight $w=e_{l}\left(x_{i}\right) \cdot a_{k l}$

## Decoding Problem and Dynamic Programming

Let $s_{l i}$ denote the probability of the most likely path generating the prefix $x_{1}, \ldots, x_{i}$ and ending in state $l$

$$
\begin{align*}
s_{l i} & =\max _{k \in Q}\left\{s_{k, i-1} \cdot \text { weight of edge between }(k, i-1) \text { and }(l, i)\right\}= \\
& =\max _{k \in Q}\left\{s_{k, i-1} \cdot \quad a_{k l} \cdot e_{l}\left(x_{i}\right)\right. \\
& =e_{l}\left(x_{i}\right) \cdot \max _{k \in Q}\left\{s_{k, i-1} \cdot a_{k l}\right\}
\end{align*}
$$

## Decoding Problem (cont'd)



- Initialization:
- $s_{\text {begin }, 0}=1$
- $s_{k, 0}=0$ for $k \neq$ begin .
- Let $\pi^{*}$ be the optimal path. Then,

$$
P\left(\boldsymbol{x} \mid \boldsymbol{\pi}^{*}\right)=\max _{k \in Q}\left\{s_{k, n}\right\}
$$

## Viterbi Algorithm

- The value of the product can become extremely small, which leads to underflowing $\rightarrow$ use log value instead.
- Goall: Find an optimal hidden path of states given observations.
- Input: Sequence of observations $\boldsymbol{x}=x_{1} \ldots x_{n}$ generated by an $\operatorname{HMM} M(\Sigma, Q, A, E)$
- Output: A path that maximizes $P(\boldsymbol{x} \mid \boldsymbol{\pi})$ over all possible paths $\boldsymbol{\pi}$.
- Initialization:

$$
\begin{aligned}
& s_{\text {begin }, 0}=\log 1=0 \\
& s_{k, 0}=\log 0=-\infty \text { for } k \neq \text { begin } .
\end{aligned}
$$

- Iterate:

For $i=1$ to $n$

$$
\text { For } l=1 \text { to }|Q|
$$

$$
s_{l, i}=\log e_{l}\left(x_{i}\right)+\max _{k \in Q}\left\{s_{k, i-1}+\log a_{k l}\right\} / / \text { note where the maximum was achieved }
$$

- Output: the sequence $\pi_{1}, \ldots, \pi_{n}$ such that

$$
s_{n, \pi_{n}}=\max _{k \in Q} s_{n, k}=\sum_{i=1, \ldots, n}\left(\log e_{\pi_{i}}+\log a_{\pi_{i-1}, \pi_{i}}\right)
$$

## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Forward-Backward Problem



Given: a sequence of coin tosses generated by an HMM.
Goal: find the probability that the dealer was using a biased coin at a particular time.

## Forward Algorithm

- Define $f_{k, i}$ (forward probability) as the probability of emitting the prefix $x_{1} \ldots x_{i}$ and reaching the state $\pi_{i}=k$.
- The recurrence for the forward algorithm:

$$
f_{k, i}=e_{k}\left(x_{i}\right) \cdot \sum_{l \in Q} f_{l, i-1} \cdot a_{l k}
$$

## Backward Algorithm

- However, forward probability is not the only factor affecting $P\left(\pi_{i}=k \mid \boldsymbol{x}\right)$.
- The sequence of transitions and emissions that the HMM undergoes between $\pi_{i+1}$ and $\pi_{n}$ also affect $P\left(\pi_{i}=k \mid \boldsymbol{x}\right)$.
forward $x_{i}$ backward


## Backward Algorithm (cont on

- Define backward probability $b_{k, i}$ as the probability of being in state $\pi_{i}=k$ and emitting the suffix $x_{i+1} \ldots x_{n}$.
- The recurrence for the backward algorithm:

$$
b_{k, i}=\sum_{l \in Q} e_{l}\left(x_{i+1}\right) \cdot b_{l, i+1} \cdot a_{k l}
$$

## Backward-Forward Algorithm



- The probability that the dealer used a biased coin at any moment $i$ :

$$
P\left(\pi_{i}=k \mid \boldsymbol{x}\right)=\frac{P\left(\boldsymbol{x}, \pi_{i}=k\right)}{P(\boldsymbol{x})}=\frac{f_{k, i} \cdot b_{k, i}}{P(\boldsymbol{x})}
$$

$P(\boldsymbol{x})$ is the sum of $P\left(x, \pi_{i}=k\right)$ over all $k$

## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## HMM Parameter Estimation



- So far, we have assumed that the transition and emission probabilities are known.
- However, in most HMM applications, the probabilities are not known. It's very hard to estimate the probabilities.
- Given
- HMM with states and alphabet (emission characters)
- Independent training sequences $\boldsymbol{x}^{(1)}, \ldots \boldsymbol{x}^{(m)} \quad \begin{gathered}\text { Sequences of different } \\ \text { length }\end{gathered}$
- Find HMM parameters $\Theta$ (that is, $a_{k l}, e_{k}(b)$ ) that maximize

$$
P\left(\boldsymbol{x}^{(1)}, \ldots \boldsymbol{x}^{(m)} \mid \Theta\right)
$$

the joint probability of the training sequences.

## Maximize the likelihood

$P\left(\boldsymbol{x}^{(1)}, \ldots \boldsymbol{x}^{(m)} \mid \Theta\right)$ as a function of $\Theta$ is called the likelihood of the model.
The training sequences are assumed independent, therefore

$$
P\left(\boldsymbol{x}^{(1)}, \ldots \boldsymbol{x}^{(m)} \mid \Theta\right)=\prod_{i} P\left(\boldsymbol{x}^{(i)} \mid \Theta\right)
$$

The parameter estimation problem seeks $\Theta$ that realizes

$$
\max \prod_{i} P\left(\boldsymbol{x}^{(i)} \mid \Theta\right)
$$

In practice the log likelihood is computed to avoid underflow errors

## Two situations



Known paths for training sequences

- CpG islands marked on training sequences
- One evening the casino dealer allows us to see when he changes dice Unknown paths
- CpG islands are not marked
- Do not see when the casino dealer changes dice


## Known paths


$A_{k l}=\#$ of times each $k \rightarrow l$ is taken in the training sequences
$E_{k}(b)=\#$ of times $b$ is emitted from state $k$ in the training sequences Compute $a_{k l}$ and $e_{k}(b)$ as maximum likelihood estimators:

$$
\begin{aligned}
& a_{k l}=\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}} \\
& e_{k}(b)=\frac{E_{k}(b)}{\sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)}
\end{aligned}
$$

## A Parameter Estimations

## Approach

- If hidden states were known, we could use our training data to estimate parameters

$$
a_{k l}=\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}}, \quad e_{k}(b)=\frac{E_{k}(b)}{\sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)}
$$

- However, usually the hidden state sequence $\pi$ is not given, but only the observed output stream $\boldsymbol{x}$
- An alternative is to make an intelligent guess of $\pi$, use the equations above to estimate parameters, then run Viterbi to estimate the hidden state, then re-estimate the parameters and repeat until the state assignments or parameter values converge.
- Such iterative approaches are called Expectation Maximization (EM) methods of parameter estimation


## Pseudocounts


$\square$ Some state $k$ may not appear in any of the training sequences. This means $A_{k l}=0$ for every state $l$ and $a_{k l}$ cannot be computed with the given equation.
$\square$ To avoid this overfitting use predetermined pseudocounts $r_{k l}$ and $r_{k}(b)$.

$$
\begin{aligned}
& A_{k l}=\# \text { of transitions } k \rightarrow l+r_{k l} \\
& E_{k}(b)=\# \text { of emissions of } b \text { from } k+r_{k}(b)
\end{aligned}
$$

The pseudocounts can reflect our prior biases about the probability values.

## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Unknown paths: Viterbi training

Idea: use Viterbi decoding to compute the most probable path for training sequence $x$.

Start with some guess for initial parameters and compute $\pi^{*}$ the most probable path for $x$ using initial parameters.
Iterate until no change in $\pi^{*}$ :
Determine $A_{k l}$ and $E_{k}(b)$ as before
Compute new parameters $a_{k l}$ and $e_{k}(b)$ using the same formulas as before
Compute new $\boldsymbol{\pi}^{*}$ for $\boldsymbol{x}$ and the current parameters

## Viterbi training analysis

$\square$ The algorithm converges precisely.
There are finitely many possible paths.
New parameters are uniquely determined by the current $\pi^{*}$.
There may be several paths for $x$ with the same probability, hence must compare the new $\pi^{*}$ with all previous paths having highest probability.
$\square$ Does not maximize the likelihood $\Pi_{\boldsymbol{x}} P(\boldsymbol{x} \mid \Theta)$ but the contribution to the likelihood of the most probable path $\Pi_{\boldsymbol{x}} P\left(\boldsymbol{x} \mid \Theta, \boldsymbol{\pi}^{*}\right)$
$\square$ In general performs less well than Baum-Welch

## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology

## Unknown paths: BaumWelch



Idea:

1. Guess initial values for parameters.
art and experience, not science
2. Estimate new (better) values for parameters.
how?
3. Repeat until stopping criteria is met.
what criteria?

## Better values for parameters



- Would need the $A_{k l}$ and $E_{k}(b)$ values but cannot count (the path is unknown) and do not want to use the most probable path.
- For all states $k, l$, symbol $b$ and training sequence $\boldsymbol{x}$

Compute $A_{k l}$ and $E_{k}(b)$ as expected values, given the current parameters

## Notation



- For any sequence of characters $x$ emitted along some unknown path $\pi$, denote by $\pi_{i}=k$ the assumption that the state at position $i$ (in which $x_{i}$ is emitted) is $k$.


## Probabilistic setting for



- Given $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}$ consider a discrete probability space with elementary events

$$
\varepsilon_{k, l}=" k \rightarrow l \text { is taken in } \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m) "}
$$

- For each $\boldsymbol{x}$ in $\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ and each position $i$ in $\boldsymbol{x}$ let $Y_{x, i}$ be a random variable defined by

$$
Y_{x, i}\left(\varepsilon_{k, l}\right)=\left\{\begin{array}{lc}
1 & \text { if } \pi_{i}=k \text { and } \pi_{i+1}=l \\
0 & \text { otherwise }
\end{array}\right.
$$

- Define $Y=\sum_{x} \sum_{i} Y_{x, i}$ random variable that counts \# of times the event $\varepsilon_{k, l}$ happens in $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}$.


## The meaning of $A_{k l}$

Let $A_{k l}$ be the expectation of $Y$

$$
\begin{aligned}
E(Y) & =\sum_{x} \sum_{i} E\left(Y_{x, i}\right)=\sum_{x} \sum_{i} P\left(Y_{x, i}=1\right)= \\
& =\sum_{x} \sum_{i} P\left(\left\{\varepsilon_{k, l} \mid \pi_{i}=k \text { and } \pi_{i+1}=l\right\}\right)= \\
& =\sum_{x} \sum_{i} P\left(\pi_{i}=k \text { and } \pi_{i+1}=l \mid x\right)
\end{aligned}
$$

Need to compute $P\left(\pi_{i}=k\right.$ and $\left.\pi_{i+1}=l \mid \boldsymbol{x}\right)$

## Probabilistic setting for

Given $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}$ consider a discrete probability space with elementary events

$$
\varepsilon_{k, b}=" b \text { is emitted in state } k \text { in } \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)} "
$$

For each $\boldsymbol{x}$ in $\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ and each position $i$ in $\boldsymbol{x}$ let $Y_{x, i}$ be a random variable defined by

$$
Y_{x, i}\left(\varepsilon_{k, b}\right)=\left\{\begin{array}{cc}
1 & \text { if } x_{i}=b \text { and } \pi_{i}=k \\
0 & \text { otherwise }
\end{array}\right.
$$

Define $Y=\sum_{x} \sum_{i} Y_{x, i}$ random variable that counts \# of times the event $\varepsilon_{k, b}$ happens in $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}$.

## The meaning of $E_{k}(b)$

Let $E_{k}(b)$ be the expectation of $Y$

$$
\begin{aligned}
& E(Y)=\sum_{x} \sum_{i} E\left(Y_{x, i}\right)=\sum_{x} \sum_{i} P\left(Y_{x, i}=1\right)= \\
& =\sum_{x} \sum_{i} P\left(\left\{\varepsilon_{k, b} \mid x_{i}=b \text { and } \pi_{i}=k\right\}\right)= \\
& =\sum_{x} \sum_{\left\{i \mid x_{i}=b\right\}} P\left(\left\{\varepsilon_{k, b} \mid x_{i}=b, \pi_{i}=k\right\}\right)=\sum_{x} \sum_{\left\{i \mid x_{i}=b\right\}} P\left(\left\{\pi_{i}=k \mid \boldsymbol{x}\right\}\right)
\end{aligned}
$$

Need to compute $P\left(\pi_{i}=k \mid \boldsymbol{x}\right)$

## Computing new parameters



Consider $\boldsymbol{x}=x_{1} \ldots x_{n}$ training sequence
Concentrate on positions $i$ and $i+1$


Use the forward-backward values:

$$
\begin{aligned}
& f_{k i}=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
& b_{k i}=P\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=k\right)
\end{aligned}
$$

## Compute

- Prob $k \rightarrow l$ is taken at position $i$ of $\boldsymbol{x}$

$$
P\left(\pi_{i}=k, \pi_{i+1}=l \mid x_{1} \ldots x_{n}\right)=P\left(\boldsymbol{x}, \pi_{i}=k, \pi_{i+1}=l\right) / P(\boldsymbol{x})
$$

- Compute $P(\boldsymbol{x})$ using either forward or backward values
- We'll show that

$$
P\left(\boldsymbol{x}, \pi_{i}=k, \pi_{i+1}=l\right)=b_{l, i+1} \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}
$$

- Expected \# times $k \rightarrow l$ is used in training sequences

$$
A_{k l}=\sum_{x} \sum_{i}\left(b_{i, i+1} \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}\right) / P(\boldsymbol{x})
$$

## Compute

$$
\begin{aligned}
& P\left(x, \pi_{i}=k, \pi_{i+1}=l\right)= \\
& \quad P\left(x_{1} \ldots x_{i}, \pi_{i}=k, \pi_{i+1}=l, x_{i+1} \ldots x_{n}\right)= \\
& \quad P\left(\pi_{i+1}=l, x_{i+1} \ldots x_{n} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \cdot P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)= \\
& \quad P\left(\pi_{i+1}=l, x_{i+1} \ldots x_{n} \mid \pi_{i}=k\right) \cdot f_{k i}= \\
& P\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=k, \pi_{i+1}=l\right) \cdot P\left(\pi_{i+1}=l \mid \pi_{i}=k\right) \cdot f_{k i}= \\
& \quad P\left(x_{i+1} \ldots x_{n} \mid \pi_{i+1}=l\right) \cdot a_{k l} \cdot f_{k i}= \\
& \quad P\left(x_{i+2} \ldots x_{n} \mid x_{i+1}, \pi_{i+1}=l\right) \cdot P\left(x_{i+1} \mid \pi_{i+1}=l\right) \cdot a_{k l} \cdot f_{k i}= \\
& P\left(x_{i+2} \ldots x_{n} \mid \pi_{i+1}=l\right) \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}= \\
& b_{l, i+1} \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}
\end{aligned}
$$

## Compute



Probability $x_{i}$ of $x$ is emitted in state $k$

$$
\begin{aligned}
& P\left(\pi_{i}=k \mid x_{1} \ldots x_{n}\right)=P\left(\pi_{i}=k, x_{1} \ldots x_{n}\right) / P(\boldsymbol{x}) \\
& P\left(\pi_{i}=k, x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k, x_{i+1} \ldots x_{n}\right)= \\
& P\left(x_{i+1} \ldots x_{n} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \cdot P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)= \\
& P\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=k\right) \cdot f_{k i}=b_{k i} \cdot f_{k i}
\end{aligned}
$$

Expected \# times $b$ is emitted in state $k$

$$
E_{k}(b)=\sum_{x} \frac{\sum_{i: x_{i}=b}\left(f_{k i} \cdot b_{k i}\right)}{P(\boldsymbol{x})}=\sum_{x} \sum_{i: x_{i}=b} \frac{f_{k i} \cdot b_{k i}}{P(\boldsymbol{x})}
$$

## Finally, new parameters

Can add pseudocounts as before.

$$
\begin{aligned}
a_{k l} & =\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}} \\
e_{k}(b) & =\frac{E_{k}(b)}{\sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)}
\end{aligned}
$$

## Stopping criteria

Cannot actually reach maximum (optimization of continuous functions) Therefore need stopping criteria.

- Compute the log likelihood of the model for current $\Theta$

$$
\sum_{x} \log P(x \mid \Theta)
$$

- Compare with previous log likelihood.
- Stop if small difference.
- Stop after a certain number of iterations.


## The Baum-Welch algorithm

## Initialization:

Pick the best-guess for model parameters (or arbitrary)

## Iteration:

1. Forward for each $\boldsymbol{x}$
2. Backward for each $\boldsymbol{x}$
3. Calculate $A_{k l}, E_{k}(b)$
4. Calculate new $a_{k l}, e_{k}(b)$
5. Calculate new log-likelihood

Until log-likelihood does not change much

## Baum-Welch analysis

- Log-likelihood is increased by iterations Baum-Welch is a particular case of the EM (expectation maximization) algorithm
- Convergence to local maximum. Choice of initial parameters determines local maximum to which the algorithm converges


## Implementation Issue 1: Scaling



- To compute $f_{k}(i)$ and $b_{k}(i)$, multiplication of a large number of terms (probability), value heads to 0 quickly, which exceed the precision range of any machine.
- The basic procedure is to multiply them by a scaling coefficient that is independent of $i$ (i.e. it depends only on $k$ ). Logarithm cannot be used because of summation. But we can use

$$
c_{t}=\frac{1}{\sum_{k=1}^{n} f_{k}(i)}
$$

- $c_{t}$ will be stored for the time points when the scaling is performed. $c_{t}$ is used for both $f_{k}(i)$ and $b_{k}(i)$. The scaling factor will be canceled out for parameter estimation.
- For Viterbi algorithm, the use of logarithm is O.K.


## Implementation Issue 2: Multiple Observation Sequence

- Denote a set of $m$ observation sequences as $\boldsymbol{X}=\left[\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right]$. Assume the observed sequences are independent.
- The re-estimation of formulas for multiple sequences are modified by adding together the individual frequencies for each sequence.


## Outline



1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology
A. Finding genes
B. Profile HMM
C. Pairwise Alignment via HMM

## Application of HMM in Biological Sequence Analysi

- Gene prediction
- Protein sequence modeling (learning, profile)
- Protein sequence alignment (decoding)
- Protein database search (scoring, e.g. fold recognition)
- Protein structure prediction


## Motif and Gene Structure



- HMM has been used for modeling binding site and gene structure prediction.


## GENSCAN <br> (genes.mit.edu/GENSCAN.html



- Simplified State Transition Diagram of GenScan



## Outline

1. CG-islands
2. The "Fair Bet Casino"
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. HMM Parameter Estimation
7. Viterbi training
8. Baum-Welch algorithm
9. Applications of HMM in Biology
A. Finding genes
B. Profile HMM
C. Pairwise Alignment via HMM

## Finding Distant Members of a Protein Family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail significance test.
- However, they may have weak similarities with many members of the family.
- The goal is to align a sequence to all members of the family at once.
- However multiple alignment is computationally expensive
- A solution: A family of related proteins can be represented by their multiple alignment and the corresponding profile.


## Profile Representation of Protein Families

- Aligned DNA sequences (without gaps) can be represented by a $4 \times n$ profile matrix reflecting the frequencies of nucleotides in every aligned position.

| $\mathbf{A}$ | .72 | .14 | 0 | 0 | .72 | .72 | 0 | 0 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{T}$ | .14 | .72 | 0 | 0 | 0 | .14 | .14 | .86 |
| G | .14 | .14 | .86 | .44 | 0 | .14 | 0 | 0 |
| $\mathbf{C}$ | 0 | 0 | .14 | .56 | .28 | 0 | .86 | .14 |

- Protein family can be represented by a $20 \times n$ profile representing frequencies of amino acids, but
- an alignment can contain gaps and insertions
- a profile does not preserve information about consecutive bases


## Profiles and HMMs

- HMMs can also be used for aligning a sequence against a profile representing protein family.
- A $20 \times n$ profile $P$ corresponds to $n$ sequentially linked match states $M_{1}, \ldots, M_{n}$ in the profile HMM of $P$.
- Multiple alignment of a protein family shows variations in conservation along the length of a protein
- Example: after aligning many globin proteins, the biologists recognized that the helices region in globins are more conserved than others.


## What are Profile HMMs?



- A Profile HMM is a probabilistic representation of a multiple alignment.
- A given multiple alignment (of a protein family) is used to build a profile HMM.
- This model then may be used to find and score less obvious potential matches of new protein sequences.


## Multiple Sequence Alignment

- Based on a score matrix, sequences are aligned with gaps

|  | $A$ | $B$ | $C$ | $D$ | $\ldots$ | - |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 5 | 1 | -2 | -1 | $\ldots$ | -5 |
| B | 1 | 6 | 4 | -3 | $\ldots$ | -5 |
| C | -2 | 4 | 5 | -4 | $\ldots$ | -5 |
| D | -1 | -3 | -4 | 4 | $\ldots$ | -5 |

- Unaligned sequences

```
AABNFCAQCDTYBNNBBTYANGC
AACFCBNFQADNNBCDTYBNANBAGC
```

- Alignment with gaps (indels) and mismatches

```
AABNFCA--QCDTYBNNBB-TY--AN--GC
AAC-FCBNFQAD---NNBCDTYBNANBAGC
```


## Multiple Sequence Alignment



- Dynamic programming too slow, use a heuristics

1. Compute all pair alignments
2. Compute maximum spanning tree
3. Incrementally add sequences with the highest score according to the spanning tree

$$
\begin{aligned}
& \text { AA-BFFCA--QCDTYBNNBB-TY--ANGC } \\
& \text { AAC-FFCANFQCD-Y-NNB-CTYBNANGC } \\
& \text { CA-BFFCA--QCDTYBNNBB-TYBNAN-C } \\
& \text { CAC-FCBANFQCD--BNNB-CTYBNANGC } \\
& \text { CDBB-FBANFAC-QCDTYBCNTY--ANGC } \\
& \text { CD-NC-BANFQCDQCDNNBCDTYBNANG- } \\
& \text {-ABNCFCA--QCDTCBNNCCDTY--ANGC } \\
& \text { AAC-CCB-NFQ-DDCDNNCCDTYBNANGC }
\end{aligned}
$$

## Profile HMM



- Assign each column to a Match state in HMM. Add Insertion and Deletion state.
- Estimate the emission probabilities according to amino acid counts in column. Different positions in the protein will have different emission probabilities


A profile HMM

## Profile HMM from Multiple Sequence Alignment

- Less than half gaps in columns $1,2,6$
- Columns 1,2,6 are match states $M_{1}, M_{2}, M_{3}$
- Columns 3,4,5 more than half gaps
- Create a single insert state $I_{2}$
- Emission probabilities

$$
\text { - } e_{M_{1}}(B)=\frac{3}{3} \quad e_{M_{1}}(A)=\frac{0}{3} e_{M_{1}}(T)=\frac{0}{3} \ldots
$$

- Zero probabilities cause problems (overfitting) -

| $M_{1}$ | $M_{2}$ |  | $I_{2}$ |  | $M_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | - | - | - | Q |
| B | A | G | - | C | Q |
| - | T | G | - | - | Q |
| B | T | - | F | - | Q |
| - | A | - | - | C | - |
| 1 | 2 | 3 | 4 | 5 | 6 | use Laplace correction (add 1; pseudocounts)

$$
\text { - } e_{M_{1}}(B)=\frac{3+1}{3+20} e_{M_{1}}(A)=\frac{0+1}{3+20} e_{M_{1}}(T)=\frac{0+1}{3+20} \ldots
$$

- What are the emission probabilities $e_{M_{2}}(),. e_{M_{3}}($.$) ?$


## Profile HMM from Multiple Sequence Alignment

- Emission probabilities
- $e_{I_{2}}(G)=\frac{2}{5}$
$e_{I_{2}}(A)=\frac{0}{5}$

$$
e_{I_{2}}(F)=\frac{1}{5} \ldots
$$

- zero probabilities cause problems (overfitting) - use Laplace correction (add 1; pseudocounts)
- $e_{I_{2}}(G)=\frac{2+1}{5+20} \quad e_{I_{2}}(A)=\frac{0+1}{5+20} \quad e_{I_{2}}(F)=\frac{1+1}{5+20} \ldots$
- Transition probabilities
- $a_{B e g i n, M_{1}}=\frac{3}{5} \quad a_{B e g i n, D_{1}}=\frac{2}{5} \quad a_{B e g i n, I_{0}}=\frac{0}{5} \ldots$

| $M_{1}$ | $M_{2}$ |  | $I_{2}$ |  | $M_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | - | - | - | Q |
| B | A | G | - | C | Q |
| - | T | G | - | - | Q |
| B | T | - | F | - | Q |
| - | A | - | - | C | - |
| 1 | 2 | 3 | 4 | 5 | 6 |

- zero probabilities cause problems (overfitting) - use Laplace correction (add 1; pseudocounts)
- $a_{\text {Begin }, M_{1}}=\frac{3+1}{5+3} \quad a_{\text {Begin }, D_{1}}=\frac{2+1}{5+3}$

$$
a_{\text {Begin, } I_{0}}=\frac{0+1}{5+3} \ldots
$$

## Profile HMM from Multiple Sequence Alignment

- When there is no information in the alignment set the probabilities to uniform
- $I_{1}$ does not appear in the alignment
- $a_{I_{1}, M_{2}}=a_{I_{1}, I_{1}}=a_{I_{1}, D_{2}}=\frac{1}{3}$
- Transition from the delete state $D_{1}$ only into $M_{2}$
- $a_{D_{1}, M_{2}}=\frac{5}{5} \quad a_{D_{1}, I_{1}}=\frac{0}{5} \quad a_{D_{1}, D_{2}}=\frac{0}{5}$
- Again add 1 to the counts

| $M_{1}$ | $M_{2}$ |  | $I_{2}$ |  | $M_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | - | - | - | Q |
| B | A | G | - | C | Q |
| - | T | G | - | - | Q |
| B | T | - | F | - | Q |
| - | A | - | - | C | - |
| 1 | 2 | 3 | 4 | 5 | 6 |

- $a_{D_{1}, M_{2}}=\frac{5+1}{5+3} \quad a_{D_{1}, I_{1}}=\frac{0+1}{5+3} \quad a_{D_{1}, D_{2}}=\frac{0+1}{5+3}$
- What are the emission probabilities
- $e_{D_{1}}(A)=? \quad e_{D_{1}}(B)=$ ?



## Building a profile HMM

- Multiple alignment is used to construct the HMM model.
- Assign each column to a Match state in HMM. Add Insertion and Deletion state.
- Estimate the emission probabilities according to amino acid counts in column. Different positions in the protein will have different emission probabilities.
- Estimate the transition probabilities between Match, Deletion and Insertion states
- The HMM model gets trained to derive the optimal parameters.



## States of Profile HMM

- Match states $M_{1}, \ldots, M_{n}$ (plus begin/end states)
- Insertion states $I_{0}, I_{1}, \ldots, I_{n}$
- Deletion states $D_{1}, \ldots, D_{n}$



## Probabilities in Profile HMM



- Transition probabilities:
- $\log \left(a_{M I}\right)+\log \left(a_{D I}\right)=$ gap open penalty
- $\log \left(a_{I I}\right)=$ gap extension penalty
- Emission probabilities:
- Probability of emitting a symbol $a$ at an insertion state $I_{j}$ :

$$
e_{I_{i}}(a)=p(a)
$$

where $p(a)$ is the frequency of the occurrence of the symbol $a$ in all the sequences.

## Profile HMM Alignment

- Define $v_{j}^{M}(i)$ as the log-odds score of the best path for matching $x_{1} \ldots x_{i}$ to profile HMM ending with $x_{i}$ emitted by the state $M_{j}$.
- $v_{j}^{I}(i)$ is the log-odds score of the best path ending in $x_{i}$ being emitted by $I_{j}$ and
- $v_{j}^{D}(i)$ is the log-odds score of the best path ending in state $D_{j}$.


# Profile HMM Alignment: Dynamic Programming 

$$
\left.\begin{array}{l}
v_{j}^{M}(i)=\log \left(\frac{e_{M_{j}}\left(x_{i}\right)}{p\left(x_{i}\right)}\right)+\max \left\{\begin{array}{l}
v_{j-1}^{M}(i-1)+\log \left(a_{M_{j-1}, M_{j}}\right) \\
v_{j-1}^{I}(i-1)+\log \left(a_{I_{j-1}, M_{j}}\right) \\
v_{j-1}^{D}(i-1)+\log \left(a_{D_{j-1}, M_{j}}\right)
\end{array}\right.
\end{array}\right\} \begin{aligned}
& v_{j}^{I}(i)=\log \left(\frac{e_{I_{j}}\left(x_{i}\right)}{p\left(x_{i}\right)}\right)+\max \left\{\begin{array}{l}
v_{j}^{M}(i-1)+\log \left(a_{M_{j}, I_{j}}\right) \\
v_{j}^{I}(i-1)+\log \left(a_{I_{j}, I_{j}}\right) \\
v_{j}^{D}(i-1)+\log \left(a_{D_{j}, I_{j}}\right)
\end{array}\right. \\
& v_{j}^{D}(i)=\max \left\{\begin{array}{l}
v_{j-1}^{M}(i-1)+\log \left(a_{M_{j-1}, D_{j}}\right) \\
v_{j-1}^{I}(i-1)+\log \left(a_{I_{j-1}, D_{j}}\right) \\
v_{j-1}^{D}(i-1)+\log \left(a_{D_{j-1}, D_{j}}\right)
\end{array}\right.
\end{aligned}
$$

## Paths in Edit Graph and Profile HMM



A path through an edit graph and the corresponding path through a profile HMM

## Making a Collection of HMM for Protein Families

- Use Blast to separate a protein database into families of related proteins.
- Construct a multiple alignment for each protein family.
- Construct a profile HMM model and optimize the parameters of the model (transition and emission probabilities).
- Align the target sequence against each HMM to find the best fit between a target sequence and an HMM.


## Application of Profile HMM to Modeling Globin Proteins

- Globins represent a large collection of protein sequences
- 400 globin sequences were randomly selected from all globins and used to construct a multiple alignment.
- Multiple alignment was used to assign an initial HMM
- This model then get trained repeatedly with model lengths chosen randomly between 145 to 170, to get an HMM model optimized probabilities.


## How Good is the Globin HMM?



- 625 remaining globin sequences in the database were aligned to the constructed HMM resulting in a multiple alignment. This multiple alignment agrees extremely well with the structurally derived alignment.
- 25044 proteins were randomly chosen from the database and compared against the globin HMM.
- This experiment resulted in an excellent separation between globin and non-globin families.


## PFAM

- Pfam http://pfam.xfam.org/ describes protein domains
- Each protein domain family in Pfam has:
- Seed alignment: manually verified multiple alignment of a representative set of sequences.
- HMM built from the seed alignment for further database searches.
- Full alignment generated automatically from the HMM
- The distinction between seed and full alignments facilitates Pfam updates.
- Seed alignments are stable resources.
- HMM profiles and full alignments can be updated with newly found amino acid sequences.


## PFAM Uses



- Pfam HMMs span entire domains that include both well-conserved motifs and less-conserved regions with insertions and deletions.
- It results in modeling complete domains that facilitates better sequence annotation and leads to a more sensitive detection.


## Model Protein Family (Profile HMM)



- Create a statistical model (HMM) for a group of related protein sequences (e.g., protein family)
- Identify core (conserved) elements of homologous sequences
- Positional evolutionary information (e.g. insertion and deletion)



## Why do We Build a Profile (Model)?

- Understand the conservation (core function and structure elements) and variation
- Sequence generation
- Multiple sequence alignments
- Profile-sequence alignment (more sensitive than sequence-sequence alignment)
- Family/fold recognition
- Profile-profile alignment


## Protein Family


seq1 VRRNNMGMPLIESSSYHDALFTLGYAGDRISQMLGMRLLAQGRLSEMAGADALDV
seq2 NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFGLAMGNLSSWVGAKALSS
seq3 SAETYRDAWGIPHLRADTPHELARAQGTARDRAWQLEVERHRAQGTSASFLGPEALSW
seq4 DRLGVVTIDAANQLDAMRALGYAQERYFEMDLMRRAPAGELSELFGAKAVDL
seq1 ---VRRNNMGMPLIESSSYHDALFTLGY--AGDRISQMLGMRLLAQGRLSEMAGADALDV
seq2 --NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFG-LAMGNLSSWVGAKALSS
seq3 SAETYRDAWGIPHLRADTPHELARAQGT--ARDRAWQLEVERHRAQGTSASFLGPEALSW
seq4 ------DRLGVVTIDAANQLDAMRALGY-AQERYFEMDLMRRAPAGELSELFGAKAVDL

- Imagine these sequences evolve from a single ancestral sequence and undergo evolutionary mutations. How to use a HMM to model?


## Key to Build a HMM is to Set Up States

- Think about the positions of the ancestral sequence is undergoing mutation events to generate new sequences in difference species. A position can be modeled by a dice.

1. Match (match or mutate): the position is kept with or without variations/mutations.
2. Delete: the position is deleted
3. Insert: amino acids are inserted between two positions.

## Hidden Markov Model



- Each match state has an emission distribution of 20 amino acids; one match state for a position.



## Hidden Markov Model



- Each match state has an emission distribution of 20 amino acids; one match state for a position.
- Deletion state is a mute state (emitting a dummy)



## Hidden Markov Model



- Each match state has an emission distribution of 20 amino acids; one match state for a position.
- Deletion state is a mute state (emitting a dummy)
- Each insertion state has an emission distribution of 20 amino acids.



## Hidden Markov Model



- How many states? ( $M$ positions: length of model) $M$ (match) $+M$ (deletion) $+(M+1)$ (insertion) $+2=3 M+3$



## Hidden Markov Model

- How many transitions? ( $M$ positions $=$ length of the model)
- Deletion: $3 M-1$, Match: $3 M-1$, Insertion: $3(M+1)-1$, B/E: 3
- Total $=9 M+3$.



## Initialization of HMM

- How to decide model length (the number of match states)?
- Learn: Use a range of model lengths (centered at the average sequence length). If transition probability from a match ( $M_{i}$ ) state to a delete state $\left(D_{i+1}\right)>0.5$, remove the $M_{i+1}$. If transition probability from a match $\left(M_{i}\right)$ state to an insertion state $\left(I_{i+1}\right)>0.5$, add a match state.
- Get from multiple alignment: assign a match state to any column with $<50 \%$ gaps.
- How to initialize transition probabilities?
- How to initialize emission probabilities?


## Initialization of HMM

- How to decide model length (the number of match states)?
- How to initialize transition probabilities?
- Uniform initialization of transition probabilities is O.K. in most cases.
- How to initialize emission probabilities?
- Uniform initialization of emission probability of insert state is O.K. in many cases.
- Uniform initialization of emission probability of match state is bad. (leads to bad local minima)
- Using amino acid distribution to initialize the emission probabilities is better. (need regularization / smoothing to avoid zero)


## Initialize from Multiple Alignments



```
seq1 ---VRRNNMGMPLIESSSYHDALFTLGY--AGDRISQMLGMRLLAQGRLSEMAGADALDV
seq2 --NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFG-LAMGNLSSWVGAKALSS
seq3 SAETYRDAWGIPHLRADTPHELARAQGT--ARDRAWQLEVERHRAQGTSASFLGPEALSW
seq4 ------DRLGVVTIDAANQLDAMRALGY-AQERYFEMDLMRRAPAGELSELFGAKAVDL
```

- First, assign match/main states, delete states, insert states from multiple sequence alignment
- Get the path of each sequence
- Count the amino acid frequencies emitted from match or insert states, which are converted into probabilities for each state (need smoothing/regularization/pseudo-count).
- Count the number of state transitions and use them to initialize transition probabilities.


## Estimate Parameters (Learning)



- We want to find a set of parameters to maximize the probability of the observed sequences in the family:
- maximum likelihood:

$$
P(\boldsymbol{x} \mid \Theta)=P\left(\boldsymbol{x}^{(1)} \mid \Theta\right) \cdot \ldots \cdot P\left(\boldsymbol{x}^{(m)} \mid \Theta\right) .
$$

- Baum-Welch's algorithm (or EM algorithm) (see above slides)


## Visualization of Features and Structure in HMM



- Myoglobin protein family. How to interpret it? [Krogh et al. 94]


## Protein Family Profile HMM Databases



- Pfam database (http://xpfam.pfam.org )
- PROSITE profiles database (http://prosite.expasy.org/ ) - protein domains, families and functional sites as well as associated patterns and profiles to identify them
- What Can We Do With the HMM?
- Recognition and classification:
- Widely used for database search: does a new sequence belong to the family? (database search)
- Idea: The sequences belonging to the family (or generated from HMM) should receive higher probability than the sequence not belong to the family (unrelated sequences).


## Two Ways to Search

1. Build a HMM for each family in the database. Search a query sequence against the database of HMMs. (Pfam)
2. Build a HMM for a query family, and search HMM against of a database of sequences

## Compute

## HMM)



- Forward algorithm to compute $P(\boldsymbol{x} \mid \Theta)$
- We work on: $-\log (P(x \mid \Theta))$ : distance from the sequence to the model. (Negative Log Likelihood score - NLL)
- Unfortunately, $-\log (P(\boldsymbol{x} \mid \Theta))$ is length dependent. So what can we do?
- Normalize the Score into Z-score
- Search the profile against a large database such as Swiss-Prot
- Plot $-\log (P(x \mid \Theta))$, NLL scores, against sequence length.


## Normalize the Score into Z-score




Example: G-ProteinCoupled Receptors

- Transmembrane proteins for signaling between environment and a cell
- NLL score is linear to sequence length.
- NLL scores of the same family is lower than un-related sequences
- We need normalization.


# Normalize the Score into Z-score 




- NULL model of unrelated sequences:

| Length | Mean <br> NLL $(\mu)$ | Std $(\sigma)$ |
| :--- | :--- | :--- |
| 100 | 500 | 5 |
| 101 | 550 | 6 |

- Compute Z-score: $\frac{|s-\mu|}{\sigma}$
- $Z>4$ : the sequence is very different from unrelated sequence (for non-database search, a randomization can work)


## Pairwise Alignment via HMM




## HMM for Multiple Sequence Alignment



- Build a HMM for a group of sequences
- Align each sequence against HMM using Viterbi algorithm to find the most likely path. (dynamic programming)
- Match the main/match states of these paths together.
- Add gaps for delete states
- For insertion between two positions, use the longest insertion of a sequence as template. Add gaps to other sequence if necessary.


## Similarity between HMMs



## COACH Approach

- COACH stands for Comparison Of Alignments by Constructing HMMs
- Given two families of sequences, build a multiple alignment (MSA) for each one of them.
- Build HMM from one MSA
- Align another MSA against the HMM (match each column of amino acids against states in the HMM)
- How to do Local Alignment:
- With respect to sequence: add an insertion state right after the start state and right before the end state.
- With respect to HMM: start state can jump to any match state and any match state can jump to end state.


## HMM Software and Code



- HMMER: http://hmmer.org - biosequence analysis using profile hidden Markov models
- The MPI Bioinformatics Toolkit http://toolkit.tuebingen.mpg.de many tools HHxxxx (based on HMM-HMM comparison)
- PRC-HMM - the profile comparer: http://supfam.mrcImb.cam.ac.uk/PRC/
- COACH: profile-profile alignment of protein families using hidden Markov models : http://www.drive5.com/lobster/
- HMMCOMP - HMM-HMM comparison: http://userscs.au.dk/cstorm/hmmcomp/
- MUSCLE - multiple alignment software: http://www.drive5.com/muscle/

