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Dinucleotide frequency –
CG-Islands

• Consider all 2-mers in a sequence

{AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT}

• Given 4 nucleotides: each with probability of occurrence ~
1

4
.  

Thus, expected probability of occurrence of a dinucleotide is 

~
1

16
.

• However, the frequencies of dinucleotides in DNA sequences 
vary widely.

• In particular, frequency of CG is typically <
1

16
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Example

• From a 291829 base sequence

• Expected value 0.0625

• The frequency of CG is 7 times smaller than expected 

frequency frequency

AA 0.120214646984 GA 0.056108392614

AC 0.055409350713 GC 0.037792809463

AG 0.068848773935 GG 0.043357731266

AT 0.083425853585 GT 0.046828954041

CA 0.074369148950 TA 0.077206436668

CC 0.044927148868 TC 0.056207766218

CG 0.008179475581 TG 0.063698479926

CT 0.066857875186 TT 0.096567155996
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Why CG-Islands?

• CG is the least frequent dinucleotide because C in CG is 
easily methylated (that is, an H-atom is replaced by a CH3-
group) and the methyl-C has the tendency to mutate into T

afterwards

• However, the methylation is suppressed around genes and 
transcription factor regions in a genome.  So, CG appears at 

relatively higher frequency within these important areas 
called CG-islands    

• Finding the CG islands within a genome is among the most 

reliable gene finding approaches

• Classical definition: A CG island is DNA sequence of 
length about 200bp with a C+G content of 50% and a ratio 
of observed-to-expected number of CG’s that is above 0.6. 

(Gardiner-Garden & Frommer, 1987)
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Problems

1. Discrimination problem: Given a short segment of genomic 
sequence. How can we decide whether this segment comes from 
a CG-island or not?

Markov Model

2. Localization problem: Given a long segment of genomic 
sequence. How can we find all contained CG-islands?

Hidden Markov Model
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Markov Model

Definition: A (time-homogeneous) Markov model (of order 1) is a system 𝑀 =
(𝑄, 𝐴) consisting of

𝑄 = {𝑠1, … , 𝑠𝑘}: a finite set of states and

𝐴 = (𝑎𝑘𝑙): a 𝑄 × |𝑄| matrix of probability of changing from state 𝑠𝑘
to state 𝑠𝑙. 𝑃 𝑥𝑖+1 = 𝑠𝑙 , 𝑥𝑖= 𝑠𝑘 = 𝑎𝑘𝑙 with σ𝑙∈𝑆 𝑎𝑘𝑙 = 1 for all 
𝑘 ∈ 𝑆.

Definition: A Markov chain is a chain 𝑥0, 𝑥1, … , 𝑥𝑛, … of random variables, 
which take states in the state set 𝑄 such that 

𝑃 𝑥𝑛 = 𝑠 𝑗<𝑛 𝑥𝑗) = 𝑃 𝑥𝑛 = 𝑠 𝑥𝑛−1) is 𝑡𝑟𝑢𝑒 for all 𝑛 > 0 and 𝑠 ∈ 𝑆.

Definition: A Markov chain is called homogeneous, if the probabilities are not 
dependent on 𝑛. (At any time 𝑖 the chain is in a specific state 𝑥𝑖 and at the 
tick of a clock the chain changes to state 𝑥𝑗 according to the given transition 

probabilities.) 
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• Weather in Prague, daily at midday: 

• Possible states are rain, sun or clouds.

• Transition probabilities:

• A Markov chain would be the observation of the weather: 
...rrrrrrccsssssscscscccrrcrcssss...

• Types of questions that the model can answer:

1. If it is sunny today, what is the probability that the sun will shine for 
the next seven days?

2. How large is the probability, that it will rain for a month?

Example
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r s c

r 0.2 0.3 0.5

s 0.2 0.6 0.2

c 0.3 0.3 0.4



Modeling the begin and 
end states

• We must specify the initialization of the chain – an initial probability 
𝑃(𝑥1) of starting in a particular state. We can add a begin state to 
the model that is labeled ’𝐵𝑒𝑔𝑖𝑛’ and add this to the states set. We 
will always assume that 𝑥0 = 𝐵𝑒𝑔𝑖𝑛 holds. Then the probability of 

the first state in the Markov chain is

𝑃(𝑥1 = 𝑠) = 𝑎𝐵𝑒𝑔𝑖𝑛,𝑠 = 𝑃(𝑠),

where 𝑃(𝑠) denotes the background probability of state 𝑠.

• Similarly, we explicitly model the end of the sequence using an end 
state ’𝐸𝑛𝑑’. Thus, the probability that we end in state t is

𝑃(𝐸𝑛𝑑|𝑥𝑛 = 𝑡) = 𝑎𝑡,𝐸𝑛𝑑.
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• Given a sequence of states 𝒙 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐿. What is the 

probability that a Markov chain will step through precisely this 
sequence of states?

𝑃 𝑥 = 𝑃 𝑥𝐿, 𝑥𝐿−1, … , 𝑥1
= 𝑃 𝑥𝐿 𝑥𝐿−1, … , 𝑥1) 𝑃(𝑥𝐿−1|𝑥𝐿−2, … , 𝑥1) … 𝑃(𝑥1)

[by repeated application of 𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌)]
= 𝑃 𝑥𝐿 𝑥𝐿−1 𝑃 𝑥𝐿−1 𝑥𝐿−2 … 𝑃 𝑥2 𝑥1 𝑃 𝑥1

= 𝑃 𝑥1 ෑ

𝑖=2

𝐿

𝑎𝑥𝑖−1,𝑥𝑖 =ෑ

𝑖=1

𝐿

𝑎𝑥𝑖−1,𝑥𝑖

If 𝑥0 = 𝐵𝑒𝑔𝑖𝑛

Probability of Markov 
chains
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• # Markov chain that generates CpG islands
• # (Source: DEKM98, p 50)
• # Number of states:
• 6
• # State labels (*=Begin, +=End):
• A C G T * +
• # Transition matrix:
• 0.1795 0.2735 0.4255 0.1195 0 0.002
• 0.1705 0.3665 0.2735 0.1875 0 0.002
• 0.1605 0.3385 0.3745 0.1245 0 0.002
• 0.0785 0.3545 0.3835 0.1815 0 0.002
• 0.2495 0.2495 0.2495 0.2495 0 0.002
• 0.0000 0.0000 0.0000 0.0000 0 1.000

• In our case the transition matrix 𝐏+ for a DNA sequence that comes 
from a CG-island, is determined as follows:

𝑝𝑠𝑡
+ =

𝑐𝑠𝑡
+

σ𝑡′ 𝑐𝑠𝑡′
+

• where 𝑐𝑠𝑡 is the number of positions in a training set of CG-islands 
at which the state 𝑠 is followed by the state 𝑡.

Transition 
matrices are 
generally 
calculated from 
training sets.

Example
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# Markov chain for CpG islands # Markov chain for non-CpG islands

# Number of states: # Number of states:

4 4

# State labels: # State labels:

A C G T A C G T

# Transition matrix P+: # Transition matrix P-:

.1795 .2735 .4255 .1195 .2995 .2045 .2845 .2095

.1705 .3665 .2735 .1875 .3215 .2975 .0775 .0775

.1605 .3385 .3745 .1245 .2475 .2455 .2975 .2075

.0785 .3545 .3835 .1815 .1765 .2385 .2915 .2915

Markov chains for CG-
islands and non CG-islands
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𝒎𝒐𝒅𝒆𝒍+ 𝒎𝒐𝒅𝒆𝒍−



• Given a short sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐿). Does it come from a CG-island 

(𝑚𝑜𝑑𝑒𝑙+)?

𝑃 𝒙 𝑚𝑜𝑑𝑒𝑙+ =ෑ

𝑖=1

𝐿

𝑎𝑥𝑖−1,𝑖𝑥𝑖
+

• Or does it not come from a non-CG-island (𝑚𝑜𝑑𝑒𝑙−)?

𝑃 𝒙 𝑚𝑜𝑑𝑒𝑙− =ෑ

𝑖=1

𝐿

𝑎𝑥𝑖−1,𝑖𝑥𝑖
−

• We calculate the log-odds ratio

𝑆 𝒙 = log
𝑃(𝒙 ∣ 𝑚𝑜𝑑𝑒𝑙+)

𝑃(𝒙 ∣ 𝑚𝑜𝑑𝑒𝑙−)
=෍

𝑖=1

𝐿

log
𝑎𝑥𝑖−1,𝑥𝑖
+

𝑎𝑥𝑖−1,𝑥𝑖
− =෍

𝑖=1

𝐿

𝛽𝑥𝑖−1,𝑥𝑖

with 𝛽𝑋𝑌 being the log likelihood ratios of corresponding transition probabilities. 

For the transition matrices above we calculate for example 𝛽𝐴𝐴 = log(0.18/0.3). 

Often the base 2 log is used, in which case the unit is in bits.

Solving Problem 1 –
discrimination
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• If 𝑚𝑜𝑑𝑒𝑙+ and 𝑚𝑜𝑑𝑒𝑙− differ substantially then a typical CG-island 

should have a higher probability within the 𝑚𝑜𝑑𝑒𝑙+ than in the 
𝑚𝑜𝑑𝑒𝑙−. The log-odds ratio should become positive.

• Generally we could use a threshold value 𝑐∗ and a test function to 
determine whether a sequence 𝑥 comes from a CG-island:

𝜙∗ 𝑥 ≔ ቊ
1 if 𝑆 𝑥 > 𝑐∗

0 if 𝑆 𝑥 ≤ 𝑐∗

where 𝜙∗ 𝑥 = 1 indicates that 𝑥 comes from a CG-island.

• Such a test is called Neyman-Pearson-Test.

Solving Problem 1 –
discrimination cont
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CG Islands and the “Fair 

Bet Casino”

• The problem of localisations of CG-islands can be modeled after a 

problem named “The Fair Bet Casino”

• The game is to flip coins, which results in only two possible outcomes: 
Head or Tail.

• The Fair coin will give Heads and Tails with same probability 
1

2
.

• The Biased coin will give Heads with prob. 
3

4
.

• Thus, we define the probabilities:

– 𝑃(𝐻|𝐹) = 𝑃(𝑇|𝐹) =
1

2

– 𝑃(𝐻|𝐵) =
3

4
,    𝑃(𝑇|𝐵) =

1

4

– The crooked dealer changes between Fair and Biased coins with 
probability 10%
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The Fair Bet Casino 
Problem

• Input: A sequence 𝒙 = 𝑥1𝑥2𝑥3… 𝑥𝑛 of coin tosses made by two 

possible coins (F or B).

• Output: A sequence 𝝅 = 𝜋1𝜋2𝜋3… 𝜋𝑛, with each 𝜋𝑖 being either F or 
B indicating that 𝑥𝑖 is the result of tossing the Fair or Biased coin 

respectively.
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Fair Bet Casino Problem

Any observed outcome of coin 
tosses could have been 
generated by any sequence of 
states!

 Ill formulated problem!

Need to incorporate a way to 
grade different sequences 

differently.

Decoding Problem



P(x | fair coin) vs. 
P(x | biased coin)

• Suppose first that dealer never changes coins. Some definitions:

• 𝑃(𝒙|𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛): probability of the dealer using
the F coin and generating the outcome 𝒙.

• 𝑃(𝒙|𝑏𝑖𝑎𝑠𝑒𝑑 𝑐𝑜𝑖𝑛):  prob. of the dealer using    
the B coin and generating outcome 𝒙.

Machine Learning in Bioinformatics 1817 May 2019



P(x | fair coin) vs. 
P(x | biased coin)

P(𝑥 | fair coin) = P(𝑥1⋯𝑥𝑛 | fair coin)

=ෑ

𝑖=1

𝑛

𝑝 𝑥𝑖 fair coin =
1

2

𝑛

P(𝑥 | biased coin) = P(𝑥1⋯𝑥𝑛 biased coin

=ෑ

𝑖=1

𝑛

𝑝 𝑥𝑖 biased coin =
3

4

𝑘
1

4

𝑛−𝑘

𝑘 – the number of Heads in 𝑥.
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𝑃(𝒙 ∣ 𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛) vs. 
𝑃(𝒙 ∣ 𝑏𝑖𝑎𝑠𝑒𝑑 𝑐𝑜𝑖𝑛)

20Machine Learning in Bioinformatics17 May 2019

𝑃 𝑥 𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛 = 𝑃 𝑥 𝑏𝑖𝑎𝑠𝑒𝑑 𝑐𝑜𝑖𝑛

1

2

𝑛

=
3𝑘

4𝑛

2𝑛 = 3𝑘

𝑛 = 𝑘 log2 3

• when 𝑘 < 𝑛/ log2 3 (𝑘~ 0.67𝑛), the dealer most likely used the fair 

coin

• when 𝑘 > 𝑛/ log2 3, he most likely used the biased coin



𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8…𝑥𝑛

Consider a sliding window of the outcome sequence.  Find the log-
odds for this short window.

log2
𝑃(𝑤𝑖𝑛𝑑𝑜𝑤 ∣ 𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛)

𝑃(𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ∣ 𝑏𝑖𝑎𝑠𝑒𝑑 𝑐𝑜𝑖𝑛)

Computing Log-odds Ratio 
in Sliding Windows

Log-odds value
0

Fair coin most likely 
used

Biased coin most likely 
used

Disadvantages:
- the length of CG-island is not known in advance
- different windows may classify the same position differently
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Hidden Markov Model 
(HMM)

• Can be viewed as an abstract machine with 𝑘 hidden states that 
emits symbols from an alphabet Σ.

• Each state has its own probability distribution, and the machine 
switches between states according to this probability distribution.

• While in a certain state, the machine makes 2 decisions:

• What state should I move to next?

• What symbol – from the alphabet Σ – should I emit?

• Observer can see the emitted symbols of an HMM but have no ability 
to know which state the HMM is currently in

• Thus, the goal is to infer the most likely hidden states of an HMM 
based on the given sequence of emitted symbols

HHHTHTHHTTTTHTHTHTHHHTHTHTHT
BBBFFFFFFFFFFFFFFFFFBBBFFFFF?
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HMM Parameters
M(Q,,A,E)

Σ: a set of emission characters.

Ex.: Σ = {𝐻, 𝑇} for coin tossing

Σ = {1, 2, 3, 4, 5, 6} for dice tossing

𝑄: a set of hidden states, each emitting symbols from Σ.

𝑄 = {𝐹, 𝐵} for coin tossing

𝐴 = (𝑎𝑘𝑙): a 𝑄 × |𝑄| matrix of probability of changing from 
state 𝑘 to state 𝑙.

𝑎𝐹𝐹 = 0.9 𝑎𝐹𝐵 = 0.1
𝑎𝐵𝐹 = 0.1 𝑎𝐵𝐵 = 0.9

𝐸 = (𝑒𝑘 (𝑏)): a 𝑄 × |Σ| matrix of probability of emitting symbol 
𝑏 while being in state 𝑘.
𝑒𝐹 (0) = ½ 𝑒𝐹 (1) = ½ 0 = 𝑇𝑎𝑖𝑙
𝑒𝐵 (0) = ¼ 𝑒𝐵 (1) = ¾ 1 = 𝐻𝑒𝑎𝑑
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HMM for Fair Bet Casino

Tails(0) Heads(1)

Fair 𝑒𝐹(0) = ½ 𝑒𝐹 1 = ½

Biased 𝑒𝐵 0 = ¼ 𝑒𝐵 1 = ¾
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• The Fair Bet Casino in HMM terms:

Σ = {0, 1} (0 for Tails and 1 Heads)

𝑄 = {𝐹, 𝐵} – 𝐹 for Fair & 𝐵 for Biased coin.

Transition Probabilities 𝐴 Emission Probabilities 𝐸

Fair Biased

Fair 𝑎𝐹𝐹 = 0.9 𝑎𝐹𝐵 = 0.1

Biased 𝑎𝐵𝐹 = 0.1 𝑎𝐵𝐵 = 0.9



HMM model for the Fair Bet Casino Problem

HMM for Fair Bet Casino
(cont’d)
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Hidden Paths

• A path 𝝅 = 𝜋1…𝜋𝑛 in the HMM is defined as a sequence of states.

• Consider path 𝝅 = 𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝐹 and 

sequence 𝒙 = 01011101001
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Transition probability from state 𝜋𝑖−1 to state 𝜋𝑖

Probability that 𝑥𝑖 was emitted from state 𝜋𝑖

𝑥 0  1  0  1  1 1  0  1  0  0  1

𝜋 =   F F  F B  B B B B  F  F F

𝑃(𝑥𝑖 ∣ 𝜋𝑖) ½  ½  ½  ¾  ¾  ¾  ¼  ¾  ½  ½  ½ 

𝑃(𝜋𝑖−1 → 𝜋𝑖) ½  9/10
9/10 

1/10 
9/10 

9/10 
9/10 

9/10 
1/10 

9/10 
9/10

Transition from the state 𝑏𝑒𝑔𝑖𝑛



• 𝑃(𝒙 ∣ 𝜋): Probability that the sequence 𝒙 = 𝑥1 𝑥2…𝑥𝑛 was generated 
by the path π= π1 π2… πn :

𝑃 𝒙 𝝅 = 𝑃 𝜋1 𝑃 𝑥1 𝜋1 𝑃 𝜋1 → 𝜋2 𝑃 𝑥2 𝜋2 ⋯
𝑃 𝑥𝑛−1 𝜋𝑛−1 𝑃 𝜋𝑛−1→ 𝜋𝑛 𝑃 𝑥𝑛 𝜋𝑛 =

= 𝑃 𝜋0 → 𝜋1 𝑃 𝑥1 𝜋1 𝑃 𝜋1 → 𝜋2 𝑃 𝑥2 𝜋2 ⋯
𝑃 𝑥𝑛−1 𝜋𝑛−1 𝑃 𝜋𝑛−1→ 𝜋𝑛 𝑃 𝑥𝑛 𝜋𝑛 =

=ෑ

𝑖=1

𝑛

𝑃 𝜋𝑖−1 → 𝜋𝑖 ⋅ 𝑃(𝑥𝑖 ∣ 𝜋𝑖)

=ෑ

𝑖=1

𝑛

𝑎𝜋𝑖−1,𝜋𝑖 ⋅ 𝑒𝜋𝑖 𝑥𝑖

𝑃(𝒙 ∣ 𝝅) Calculation

0 = 𝑏𝑒𝑔𝑖𝑛
𝜋𝑛+1 = 𝑒𝑛𝑑
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Decoding Problem

• Goal: Find an optimal hidden path of states given observations.

• Input: Sequence of observations 𝒙 = 𝑥1…𝑥𝑛 generated by an HMM 
𝑀 (Σ, 𝑄, 𝐴, 𝐸)

• Output: A path that maximizes 𝑃(𝒙 ∣ 𝝅) over all possible paths 𝝅.

Solves Problem 2 - localization
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Building Manhattan for 
Decoding Problem

• Andrew Viterbi used the Manhattan grid model to solve the 
Decoding Problem.

• Every choice of 𝝅 = 𝜋1…𝜋𝑛 corresponds to a path in a graph.

• The only valid direction in the graph is eastward.

• This graph has 𝑄 2 (𝑛 − 1) edges.
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Edit Graph for Decoding 
Problem 

S
ta

te
s
𝑄

𝑛 layers

The path 

with the 

greatest 

probability
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Decoding Problem vs. 
Alignment Problem

17 May 2019 Machine Learning in Bioinformatics 34

Valid directions in the 
alignment problem.

Valid directions in the decoding 
problem.



Decoding Problem as Finding a 
Longest Path in a DAG

• The Decoding Problem is reduced to finding a longest path in the 
directed acyclic graph (DAG) above.

• Notes: the length of the path is defined as the product of its edges’ 
weights, not the sum.

• Every path in the graph has the probability 𝑃(𝒙 ∣ 𝝅).

• The Viterbi algorithm finds the path that maximizes 𝑃(𝒙 ∣ 𝝅) among 

all possible paths.

• The Viterbi algorithm runs in 𝑂(𝑛 𝑄 2) time.
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Decoding Problem: 
weights of edges
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𝑤

The weight 𝑤 is given by:

???

(𝑘, 𝑖 − 1 ) (𝑙, 𝑖)



Decoding Problem: 
weights of edges
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𝑤

The weight 𝑤 is given by:

??

(𝑘, 𝑖 − 1 ) (𝑙, 𝑖)

𝑃 𝒙 𝝅 =ෑ

𝑖=1

𝑛

𝑎𝜋𝑖−1,𝜋𝑖 ⋅ 𝑒𝜋𝑖(𝑥𝑖)



Decoding Problem: 
weights of edges
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𝑤

The weight 𝑤 is given by:

?

Each weight is a factor in the product

𝑖-th term = 𝑎𝜋𝑖−1,𝜋𝑖 ⋅ 𝑒𝜋𝑖(𝑥𝑖)

(𝑘, 𝑖 − 1 ) (𝑙, 𝑖)



Decoding Problem: 
weights of edges

w

The weight  𝑤 = 𝑒𝑙(𝑥𝑖) . 𝑎𝑘𝑙

i-th term = 𝑎𝜋𝑖−1,𝜋𝑖 ⋅ 𝑒𝜋𝑖 𝑥𝑖 = 𝑎𝑘,𝑙 ⋅ 𝑒𝜋𝑖(𝑥𝑖) for  𝜋𝑖−1 = 𝑘, 𝜋𝑖 = 𝑙
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(𝑙, 𝑖)(𝑘, 𝑖 − 1 )



Decoding Problem and 
Dynamic Programming
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Let 𝑠𝑙𝑖 denote the probability of the most likely path generating the prefix 
𝑥1, … , 𝑥𝑖 and ending in state 𝑙

𝑠𝑙𝑖 = max
𝑘∈𝑄

{𝑠𝑘,𝑖−1 ⋅ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑘, 𝑖 − 1 ) 𝑎𝑛𝑑 (𝑙, 𝑖)} =

= max
𝑘∈𝑄

𝑠𝑘,𝑖−1 ⋅ 𝑎𝑘𝑙 ⋅ 𝑒𝑙 𝑥𝑖

= 𝑒𝑙 𝑥𝑖 · max
𝑘∈𝑄

{𝑠𝑘,𝑖−1 ⋅ 𝑎𝑘𝑙}



Decoding Problem 
(cont’d)

• Initialization:

• 𝑠𝑏𝑒𝑔𝑖𝑛,0 = 1

• 𝑠𝑘,0 = 0 for 𝑘 ≠ 𝑏𝑒𝑔𝑖𝑛.

• Let 𝝅∗ be the optimal path. Then,

𝑃 𝒙 𝝅∗ = max
𝑘∈𝑄

{𝑠𝑘,𝑛}
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Viterbi Algorithm

• The value of the product can become extremely small, which leads to underflowing →
use log value instead. 

• Goal: Find an optimal hidden path of states given observations.

• Input: Sequence of observations 𝒙 = 𝑥1…𝑥𝑛 generated by an HMM 𝑀 (Σ, 𝑄, 𝐴, 𝐸)

• Output: A path that maximizes 𝑃(𝒙 ∣ 𝝅) over all possible paths 𝝅.

• Initialization:
𝑠𝑏𝑒𝑔𝑖𝑛,0 = log 1 = 0

𝑠𝑘,0 = log 0 = −∞ for 𝑘 ≠ 𝑏𝑒𝑔𝑖𝑛.

• Iterate:

For 𝑖 = 1 to 𝑛

For 𝑙 = 1 to |𝑄|

𝑠𝑙,𝑖 = log 𝑒𝑙 𝑥𝑖 +max 𝑘  𝑄 {𝑠𝑘,𝑖−1 + log𝑎𝑘𝑙} // note where the maximum was achieved

• Output: the sequence 𝜋1, … , 𝜋𝑛 such that 

𝑠𝑛,𝜋𝑛 = max
𝑘∈𝑄

𝑠𝑛,𝑘 = σ𝑖=1,…,𝑛 log 𝑒𝜋𝑖 + log𝑎𝜋𝑖−1,𝜋𝑖
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Forward-Backward 
Problem

Given: a sequence of coin tosses generated by an HMM.

Goal: find the probability that the dealer was using a biased coin at 
a particular time.
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Forward Algorithm

• Define 𝑓𝑘,𝑖 (forward probability) as the probability of emitting the 

prefix 𝑥1…𝑥𝑖 and reaching the state 𝜋𝑖 = 𝑘.

• The recurrence for the forward algorithm:

𝑓𝑘,𝑖 = 𝑒𝑘 𝑥𝑖 ⋅෍

𝑙∈𝑄

𝑓𝑙,𝑖−1 ⋅ 𝑎𝑙𝑘
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Backward Algorithm

• However, forward probability is not the only factor affecting          
𝑃(𝜋𝑖 = 𝑘 ∣ 𝒙).

• The sequence of transitions and emissions that the HMM undergoes 
between 𝜋𝑖+1 and 𝜋𝑛 also affect 𝑃(𝜋𝑖 = 𝑘 ∣ 𝒙).

forward      𝑥𝑖 backward
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Backward Algorithm (cont’d)

• Define backward probability 𝑏𝑘,𝑖 as the probability of being in state 

𝜋𝑖 = 𝑘 and emitting the suffix 𝑥𝑖+1…𝑥𝑛.

• The recurrence for the backward algorithm:

𝑏𝑘,𝑖 =෍

𝑙∈𝑄

𝑒𝑙 𝑥𝑖+1 ⋅ 𝑏𝑙,𝑖+1 ⋅ 𝑎𝑘𝑙
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Backward-Forward 
Algorithm

• The probability that the dealer used a biased coin at any moment 𝑖:

𝑃 𝜋𝑖 = 𝑘 𝒙 =
𝑃(𝒙, 𝜋𝑖 = 𝑘)

𝑃(𝒙)
=
𝑓𝑘,𝑖 ⋅ 𝑏𝑘,𝑖
𝑃(𝒙)
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𝑃(𝒙) is the sum of 𝑃(𝑥, 𝜋𝑖 = 𝑘) over all 𝑘
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HMM Parameter 
Estimation

• So far, we have assumed that the transition and emission 
probabilities are known.

• However, in most HMM applications, the probabilities are not known.  
It’s very hard to estimate the probabilities.

• Given

− HMM with states and alphabet (emission characters)

− Independent training sequences 𝒙 1 , … 𝒙 𝑚

• Find HMM parameters Θ (that is, 𝑎𝑘𝑙 , 𝑒𝑘(𝑏)) that maximize 

𝑃(𝒙 1 , … 𝒙 𝑚 ∣ Θ)

the joint probability of the training sequences. 

Machine Learning in Bioinformatics 5017 May 2019

Sequences of different 
length



𝑃(𝒙 1 , … 𝒙 𝑚 ∣ Θ) as a function of Θ is called the likelihood of the 
model.

The training sequences are assumed independent, therefore

𝑃(𝒙 1 , … 𝒙 𝑚 ∣ Θ) = ෑ

𝑖

𝑃(𝒙 𝑖 ∣ Θ)

The parameter estimation problem seeks Θ that realizes

maxෑ

𝑖

𝑃(𝒙 𝑖 ∣ Θ)

In practice the log likelihood is computed to avoid underflow errors

Maximize the likelihood
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Two situations

Known paths  for training sequences

− CpG islands marked on training sequences

− One evening the casino dealer allows us to see when he changes dice

Unknown paths 

− CpG islands are not marked

− Do not see when the casino dealer changes dice
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Known paths

Machine Learning in Bioinformatics 5317 May 2019

𝐴𝑘𝑙 = # of times each 𝑘 → 𝑙 is taken in the training sequences

𝐸𝑘 𝑏 = # of times 𝑏 is emitted from state 𝑘 in the training sequences

Compute 𝑎𝑘𝑙 and 𝑒𝑘 (𝑏) as maximum likelihood estimators:

𝑎𝑘𝑙 =
𝐴𝑘𝑙

σ𝑙′ 𝐴𝑘𝑙′

𝑒𝑘 𝑏 =
𝐸𝑘(𝑏)

σ𝑏′ 𝐸𝑘(𝑏
′)



A Parameter Estimations  
Approach

• If hidden states were known, we could use our training data to 
estimate parameters

𝑎𝑘𝑙 =
𝐴𝑘𝑙

σ𝑙′ 𝐴𝑘𝑙′
, 𝑒𝑘 𝑏 =

𝐸𝑘(𝑏)

σ𝑏′ 𝐸𝑘(𝑏
′)

• However, usually the hidden state sequence  is not given, but only 
the observed output stream 𝒙

• An alternative is to make an intelligent guess of , use the 

equations above to estimate parameters, then run Viterbi to 
estimate the hidden state, then re-estimate the parameters and 
repeat until the state assignments or parameter values converge.

• Such iterative approaches are called Expectation Maximization (EM) 
methods of parameter estimation

Machine Learning in Bioinformatics 5417 May 2019



Pseudocounts

❑ Some state 𝑘 may not appear in any of the training sequences. 
This means 𝐴𝑘𝑙 = 0 for every state 𝑙 and 𝑎𝑘𝑙 cannot be computed 

with the given equation.

❑ To avoid this overfitting use predetermined pseudocounts 𝑟𝑘𝑙 and 
𝑟𝑘 (𝑏).

𝐴𝑘𝑙 = # of transitions 𝑘→ 𝑙 + 𝑟𝑘𝑙
𝐸𝑘 𝑏 = # of emissions of 𝑏 from 𝑘 + 𝑟𝑘 (𝑏)

The pseudocounts can reflect our prior biases about the probability 
values.
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Unknown paths: Viterbi 
training

Idea: use Viterbi decoding to compute the most probable path for 
training sequence 𝒙.

Start with some guess for initial parameters and compute 𝝅∗ the most 
probable path for 𝒙 using initial parameters.

Iterate until no change in 𝝅∗:
Determine 𝐴𝑘𝑙 and 𝐸𝑘 (𝑏) as before

Compute new parameters 𝑎𝑘𝑙 and 𝑒𝑘 (𝑏) using the same formulas as 
before

Compute new 𝝅∗ for 𝒙 and the current parameters
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Viterbi training analysis

❑ The algorithm converges precisely.

There are finitely many possible paths.

New parameters are uniquely determined by the current 𝝅∗.

There may be several paths for 𝒙 with the same probability, hence 
must compare the new 𝝅∗ with all previous paths having highest 

probability.

❑ Does not maximize the likelihood Π𝒙 𝑃(𝒙 ∣ Θ) but the contribution 

to the likelihood of the most probable path Π𝒙 𝑃(𝒙 ∣ Θ, 𝝅
∗)

❑ In general performs less well than Baum-Welch
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Unknown paths: Baum-
Welch

Idea:

1. Guess initial values for parameters.

art and experience, not science

2. Estimate new (better) values for parameters.

how?

3. Repeat until stopping criteria is met.

what criteria?
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Better values for 
parameters

• Would need the 𝐴𝑘𝑙 and 𝐸𝑘(𝑏) values but cannot count (the path is 

unknown) and do not want to use the most probable path.

• For all states 𝑘, 𝑙, symbol 𝑏 and training sequence 𝒙

Machine Learning in Bioinformatics 6117 May 2019

Compute 𝐴𝑘𝑙 and 𝐸𝑘(𝑏) as expected values, given the current 

parameters



Notation

• For any sequence of characters 𝒙 emitted along some unknown 
path 𝝅, denote by 𝜋𝑖 = 𝑘 the assumption that the state at position 
𝑖 (in which 𝑥𝑖 is emitted) is 𝑘.
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• Given 𝒙 1 , … , 𝒙 𝑚 consider a discrete probability space with 

elementary events

𝜀𝑘,𝑙 = “𝑘 → 𝑙 is taken in 𝒙 1 , … , 𝒙 𝑚 ”

• For each 𝒙 in {𝒙 1 , … , 𝒙 𝑚 } and each position 𝑖 in 𝒙 let 𝑌𝑥,𝑖 be a 

random variable defined by 

𝑌𝑥,𝑖 𝜀𝑘,𝑙 = ቊ
1 if 𝜋𝑖 = 𝑘 and 𝜋𝑖+1 = 𝑙
0 otherwise

• Define 𝑌 = σ𝑥σ𝑖 𝑌𝑥,𝑖 random variable that counts # of times the 

event 𝜀𝑘,𝑙 happens in 𝒙 1 , … , 𝒙 𝑚 .

Probabilistic setting 
for 𝐴𝑘𝑙
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The meaning of 𝐴𝑘𝑙

Let 𝐴𝑘𝑙 be the expectation of 𝑌

𝐸 𝑌 =෍

𝑥

෍

𝑖

𝐸 𝑌𝑥,𝑖 =෍
𝑥

෍
𝑖

𝑃 𝑌𝑥,𝑖 = 1 =

=෍

𝑥

෍

𝑖

𝑃 𝜀𝑘,𝑙 𝜋𝑖 = 𝑘 𝑎𝑛𝑑 𝜋𝑖+1 = 𝑙 =

=෍

𝑥

෍

𝑖

𝑃 𝜋𝑖 = 𝑘 𝑎𝑛𝑑 𝜋𝑖+1 = 𝑙 𝒙

Need to compute 𝑃(𝜋𝑖 = 𝑘 𝑎𝑛𝑑 𝜋𝑖+1 = 𝑙 ∣ 𝒙)
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Given 𝒙 1 , … , 𝒙 𝑚 consider a discrete probability space with 
elementary events

𝜀𝑘,𝑏 = "𝑏 is emitted in state 𝑘 in 𝒙 1 , … , 𝒙 𝑚 "

For each 𝒙 in {𝒙 1 , … , 𝒙 𝑚 } and each position 𝑖 in 𝒙 let 𝑌𝑥,𝑖 be a 

random variable defined by 

𝑌𝑥,𝑖 𝜀𝑘,𝑏 = ቊ
1 if 𝑥𝑖 = 𝑏 and 𝜋𝑖 = 𝑘
0 otherwise

Define 𝑌 = σ𝑥σ𝑖 𝑌𝑥,𝑖 random variable that counts# of times the event 

𝜀𝑘,𝑏 happens in 𝒙 1 , … , 𝒙 𝑚 .

Probabilistic setting for 
𝐸𝑘(𝑏)
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Let 𝐸𝑘(𝑏) be the expectation of 𝑌

𝐸 𝑌 =෍

𝑥

෍

𝑖

𝐸(𝑌𝑥,𝑖) =෍

𝑥

෍

𝑖

𝑃 𝑌𝑥,𝑖 = 1 =

=෍

𝑥

෍

𝑖

𝑃({𝜀𝑘,𝑏 ∣ 𝑥𝑖 = 𝑏 𝑎𝑛𝑑 𝜋𝑖 = 𝑘 }) =

=෍

𝑥

෍

𝑖 𝑥𝑖 = 𝑏

𝑃({𝜀𝑘,𝑏 ∣ 𝑥𝑖 = 𝑏, 𝜋𝑖 = 𝑘}) =෍

𝑥

෍

𝑖 𝑥𝑖 = 𝑏

𝑃({𝜋𝑖 = 𝑘 ∣ 𝒙})

Need to compute 𝑃(𝑖 = 𝑘 ∣ 𝒙)

The meaning of 𝐸𝑘(𝑏)
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Consider 𝒙 = 𝑥1…𝑥𝑛 training sequence

Concentrate on positions 𝑖 and 𝑖 + 1

Use the forward-backward values: 

𝑓𝑘𝑖 = 𝑃(𝑥1 … 𝑥𝑖 ,𝑖 = 𝑘)

𝑏𝑘𝑖 = 𝑃(𝑥𝑖+1… 𝑥𝑛 ∣ 𝑖 = 𝑘)

Computing new 
parameters
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Compute 𝐴𝑘𝑙 (1)

• Prob 𝑘 → 𝑙 is taken at position 𝑖 of 𝒙
𝑃 𝜋𝑖 = 𝑘, 𝜋𝑖+1 = 𝑙 𝑥1…𝑥𝑛 = 𝑃 𝒙, 𝜋𝑖 = 𝑘, 𝜋𝑖+1 = 𝑙 /𝑃(𝒙)

• Compute 𝑃(𝒙) using either forward or backward values

• We’ll show that 
𝑃 𝒙, 𝜋𝑖 = 𝑘, 𝜋𝑖+1 = 𝑙 = 𝑏𝑙,𝑖+1 ⋅ 𝑒𝑙 𝑥𝑖+1 ⋅ 𝑎𝑘𝑙 ⋅ 𝑓𝑘𝑖

• Expected # times 𝑘→ 𝑙 is used in training sequences

𝐴𝑘𝑙 = σ𝑥σ𝑖 𝑏𝑖,𝑖+1 ⋅ 𝑒𝑙(𝑥𝑖+1 ⋅ 𝑎𝑘𝑙 ⋅ 𝑓𝑘𝑖)/𝑃(𝒙)
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Compute 𝐴𝑘𝑙 (2)

𝑃 𝒙, 𝜋𝑖 = 𝑘, 𝜋𝑖+1 = 𝑙 =

𝑃(𝑥1…𝑥𝑖 , 𝜋𝑖 = 𝑘, 𝜋𝑖+1 = 𝑙, 𝑥𝑖+1… 𝑥𝑛) =

𝑃(𝜋𝑖+1 = 𝑙, 𝑥𝑖+1… 𝑥𝑛 ∣ 𝑥1…𝑥𝑖 , 𝜋𝑖 = 𝑘) · 𝑃(𝑥1…𝑥𝑖 , 𝜋𝑖 = 𝑘 ) =

𝑃 𝜋𝑖+1 = 𝑙, 𝑥𝑖+1… 𝑥𝑛 𝜋𝑖 = 𝑘 · 𝑓𝑘𝑖 =

𝑃(𝑥𝑖+1…𝑥𝑛 ∣ 𝜋𝑖 = 𝑘, 𝜋𝑖+1 = 𝑙) · 𝑃(𝜋𝑖+1 = 𝑙 ∣ 𝜋𝑖 = 𝑘) · 𝑓𝑘𝑖 =

𝑃(𝑥𝑖+1…𝑥𝑛 ∣ 𝜋𝑖+1 = 𝑙) · 𝑎𝑘𝑙 · 𝑓𝑘𝑖 =

𝑃 𝑥𝑖+2…𝑥𝑛 𝑥𝑖+1, 𝜋𝑖+1 = 𝑙 · 𝑃 𝑥𝑖+1 𝜋𝑖+1 = 𝑙 · 𝑎𝑘𝑙 · 𝑓𝑘𝑖 =

𝑃 𝑥𝑖+2… 𝑥𝑛 𝜋𝑖+1 = 𝑙 · 𝑒𝑙(𝑥𝑖+1) · 𝑎𝑘𝑙 · 𝑓𝑘𝑖 =

𝑏𝑙,𝑖+1 · 𝑒𝑙(𝑥𝑖+1) · 𝑎𝑘𝑙 · 𝑓𝑘𝑖
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Probability 𝑥𝑖 of 𝑥 is emitted in state 𝑘

𝑃(𝜋𝑖 = 𝑘 ∣ 𝑥1…𝑥𝑛) = 𝑃(𝜋𝑖 = 𝑘, 𝑥1…𝑥𝑛)/𝑃(𝒙)

𝑃(𝜋𝑖 = 𝑘, 𝑥1…𝑥𝑛) = 𝑃(𝑥1…𝑥𝑖 , 𝜋𝑖 = 𝑘, 𝑥𝑖+1…𝑥𝑛) =

𝑃(𝑥𝑖+1…𝑥𝑛 ∣ 𝑥1…𝑥𝑖 , 𝜋𝑖 = 𝑘) · 𝑃(𝑥1…𝑥𝑖 , 𝜋𝑖 = 𝑘) =

𝑃 𝑥𝑖+1…𝑥𝑛 𝜋𝑖 = 𝑘 ⋅ 𝑓𝑘𝑖 = 𝑏𝑘𝑖 ⋅ 𝑓𝑘𝑖

Expected # times 𝑏 is emitted in state 𝑘

𝐸𝑘 𝑏 =෍

𝑥

σ𝑖:𝑥𝑖=𝑏
(𝑓𝑘𝑖 ⋅ 𝑏𝑘𝑖)

𝑃(𝒙)
=෍

𝑥

෍

𝑖:𝑥𝑖=𝑏

𝑓𝑘𝑖 ⋅ 𝑏𝑘𝑖
𝑃(𝒙)

Compute 𝐸𝑘(𝑏)
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Finally, new parameters

Can add pseudocounts as before.

𝑎𝑘𝑙 =
𝐴𝑘𝑙

σ𝑙′ 𝐴𝑘𝑙′

𝑒𝑘 𝑏 =
𝐸𝑘 𝑏

σ𝑏′ 𝐸𝑘 𝑏′
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Cannot actually reach maximum (optimization of continuous functions)

Therefore need stopping criteria.

• Compute the log likelihood of the model for current Θ

෍

𝒙

log 𝑃 𝒙 Θ

• Compare with previous log likelihood.

• Stop if small difference.

• Stop after a certain number of iterations.

Stopping criteria
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The Baum-Welch algorithm

Initialization:

Pick the best-guess for model parameters

(or arbitrary)

Iteration:

1. Forward for each 𝒙

2. Backward for each 𝒙

3. Calculate 𝐴𝑘𝑙, 𝐸𝑘(𝑏)

4. Calculate new 𝑎𝑘𝑙, 𝑒𝑘(𝑏)

5. Calculate new log-likelihood

Until log-likelihood does not change much
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Baum-Welch analysis 

• Log-likelihood is increased by iterations

Baum-Welch is a particular case of the EM (expectation 
maximization) algorithm

• Convergence to local maximum. Choice of initial parameters 
determines local maximum to which the algorithm converges
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Implementation Issue 1: 
Scaling

• To compute 𝑓𝑘(𝑖) and 𝑏𝑘(𝑖), multiplication of a large number of 

terms (probability), value heads to 0 quickly, which exceed the 
precision range of any machine.

• The basic procedure is to multiply them by a scaling coefficient that 
is independent of 𝑖 (i.e. it depends only on 𝑘).  Logarithm cannot be 

used because of summation. But we can use

𝑐𝑡 =
1

σ𝑘=1
𝑛 𝑓𝑘 𝑖

• 𝑐𝑡 will be stored for the time points when the scaling is performed. 
𝑐𝑡 is used for both 𝑓𝑘 (𝑖) and 𝑏𝑘 (𝑖). The scaling factor will be 

canceled out for parameter estimation.

• For Viterbi algorithm, the use of logarithm is O.K.
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Implementation Issue 2: 
Multiple Observation Sequence 

• Denote a set of 𝑚 observation sequences as 𝑿 = 𝒙 1 , … , 𝒙 𝑚 . 

Assume the observed sequences are independent.

• The re-estimation of formulas for multiple sequences are modified 
by adding together the individual frequencies for each sequence.

Machine Learning in Bioinformatics 7717 May 2019



Outline

1. CG-islands

2. The “Fair Bet Casino”

3. Hidden Markov Model

4. Decoding Algorithm

5. Forward-Backward Algorithm

6. HMM Parameter Estimation

7. Viterbi training

8. Baum-Welch algorithm

9. Applications of HMM in Biology
A. Finding genes

B. Profile HMM

C. Pairwise Alignment via HMM
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Application of HMM in 
Biological Sequence Analysis

• Gene prediction

• Protein sequence modeling (learning, profile)

• Protein sequence alignment (decoding)

• Protein database search (scoring, e.g. fold recognition)

• Protein structure prediction

• …
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Motif and Gene Structure

• HMM has been used for modeling binding site and gene structure 
prediction.
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Poly A



GENSCAN
(genes.mit.edu/GENSCAN.html)
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• Simplified State Transition 

Diagram of GenScan

UTR = untranslated

The first exon of a gene

Intron

Exon

The last exon of a gene

E

I

Einit
+ Eterm

+

F+

(5’ UTR)
T+

(3’ UTR)

N 
(intergenic 

region)

P+

(promo
ter)

A+

(polyA
signal)

Esngl
+ (single-

exon gene)



Outline

1. CG-islands

2. The “Fair Bet Casino”

3. Hidden Markov Model

4. Decoding Algorithm

5. Forward-Backward Algorithm

6. HMM Parameter Estimation

7. Viterbi training

8. Baum-Welch algorithm

9. Applications of HMM in Biology
A. Finding genes

B. Profile HMM

C. Pairwise Alignment via HMM
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Finding Distant Members 
of a Protein Family

• A distant cousin of functionally related sequences in a protein family 
may have weak pairwise similarities with each member of the family 
and thus fail significance test. 

• However, they may have weak similarities with many members of 
the family.  

• The goal is to align a sequence to all members of the family at 
once.

• However multiple alignment is computationally expensive

• A solution: A family of related proteins can be represented by their 
multiple alignment and the corresponding profile.
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Profile Representation of 
Protein Families

• Aligned DNA sequences (without gaps) can be represented by a   
4 × 𝑛 profile matrix reflecting the frequencies  of nucleotides in 
every aligned position.

• Protein family can be represented by a 20 × 𝑛 profile representing 
frequencies of amino acids, but 

• an alignment can contain gaps and insertions

• a profile does not preserve information about consecutive bases
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Profiles and HMMs

• HMMs can also be used for aligning a sequence against a profile 
representing protein family.

• A 20 × 𝑛 profile 𝑃 corresponds to 𝑛 sequentially linked match states 
𝑀1, … ,𝑀𝑛 in the profile HMM of 𝑃.

• Multiple alignment of a protein family shows variations in 
conservation along the length of a protein

• Example: after aligning many globin proteins, the biologists 
recognized that the helices region in globins are more conserved 
than others.
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What are Profile HMMs?

• A Profile HMM is a probabilistic representation of a multiple 
alignment.

• A given multiple alignment (of a protein family) is used to build a 
profile HMM.

• This model then may be used to find and score less obvious 
potential matches of new protein sequences.
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Multiple Sequence 
Alignment
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AABNFCAQCDTYBNNBBTYANGC

AACFCBNFQADNNBCDTYBNANBAGC

A B C D … ‒

A 5 1 -2 -1 … -5

B 1 6 4 -3 … -5

C -2 4 5 -4 … -5

D -1 -3 -4 4 … -5

gap

• Based on a score matrix, sequences are aligned with gaps

• Unaligned sequences

• Alignment with gaps (indels) and mismatches

AABNFCA--QCDTYBNNBB-TY--AN--GC

AAC-FCBNFQAD---NNBCDTYBNANBAGC



AA-BFFCA--QCDTYBNNBB-TY--ANGC

AAC-FFCANFQCD-Y-NNB-CTYBNANGC

CA-BFFCA--QCDTYBNNBB-TYBNAN-C

CAC-FCBANFQCD--BNNB-CTYBNANGC

CDBB-FBANFAC-QCDTYBCNTY--ANGC

CD-NC-BANFQCDQCDNNBCDTYBNANG-

-ABNCFCA--QCDTCBNNCCDTY--ANGC

AAC-CCB-NFQ-DDCDNNCCDTYBNANGC

Multiple Sequence 
Alignment

• Dynamic programming too slow, use a heuristics

1. Compute all pair alignments

2. Compute maximum spanning tree

3. Incrementally add sequences with the highest score according 
to the spanning tree
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Profile HMM

17 May 2019 Machine Learning in Bioinformatics 89

A profile HMM

• Assign each column to a Match state in HMM. Add Insertion and 
Deletion state. 

• Estimate the emission probabilities according to amino acid counts 
in column. Different positions in the protein will have different 
emission probabilities

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8

𝐼0 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8

Begin 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 End



𝑴𝟏𝑴𝟐 𝑰𝟐 𝑴𝟑

B A ‒ ‒ ‒ Q

B A G ‒ C Q

- T G ‒ ‒ Q

B T ‒ F ‒ Q

- A ‒ ‒ C ‒

1 2 3 4 5 6

Profile HMM from Multiple 
Sequence Alignment 

• Less than half gaps in columns 1, 2, 6

• Columns 1,2,6 are match states 𝑀1, 𝑀2, 𝑀3

• Columns 3,4,5 more than half gaps

• Create a single insert state 𝐼2

• Emission probabilities

• 𝑒𝑀1
𝐵 =

3

3
𝑒𝑀1

𝐴 =
0

3
𝑒𝑀1

𝑇 =
0

3
…

• Zero probabilities cause problems (overfitting) –
use Laplace correction (add 1; pseudocounts)

• 𝑒𝑀1
𝐵 =

3+1

3+20
𝑒𝑀1

𝐴 =
0+1

3+20
𝑒𝑀1

𝑇 =
0+1

3+20
…

• What are the emission probabilities 𝑒𝑀2
. , 𝑒𝑀3

. ?
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Profile HMM from Multiple 
Sequence Alignment 

• Emission probabilities

• 𝑒𝐼2 𝐺 =
2

5
𝑒𝐼2 𝐴 =

0

5
𝑒𝐼2 𝐹 =

1

5
…

• zero probabilities cause problems (overfitting) – use 
Laplace correction (add 1; pseudocounts)

• 𝑒𝐼2 𝐺 =
2+1

5+20
𝑒𝐼2 𝐴 =

0+1

5+20
𝑒𝐼2 𝐹 =

1+1

5+20
…

• Transition probabilities

• 𝑎𝐵𝑒𝑔𝑖𝑛,𝑀1
=

3

5
𝑎𝐵𝑒𝑔𝑖𝑛,𝐷1 =

2

5
𝑎𝐵𝑒𝑔𝑖𝑛,𝐼0 =

0

5
…

• zero probabilities cause problems (overfitting) – use 
Laplace correction (add 1; pseudocounts)

• 𝑎𝐵𝑒𝑔𝑖𝑛,𝑀1
=

3+1

5+3
𝑎𝐵𝑒𝑔𝑖𝑛,𝐷1=

2+1

5+3

𝑎𝐵𝑒𝑔𝑖𝑛,𝐼0 =
0+1

5+3
…
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𝑴𝟏𝑴𝟐 𝑰𝟐 𝑴𝟑

B A ‒ ‒ ‒ Q

B A G ‒ C Q

- T G ‒ ‒ Q

B T ‒ F ‒ Q

- A ‒ ‒ C ‒

1 2 3 4 5 6



Profile HMM from Multiple 
Sequence Alignment 

• When there is no information in the alignment –
set the probabilities to uniform

• 𝐼1 does not appear in the alignment

• 𝑎𝐼1,𝑀2
= 𝑎𝐼1,𝐼1 = 𝑎𝐼1,𝐷2 =

1

3

• Transition from the delete state 𝐷1 only into 𝑀2

• 𝑎𝐷1,𝑀2
=

5

5
𝑎𝐷1,𝐼1=

0

5
𝑎𝐷1,𝐷2 =

0

5

• Again add 1 to the counts

• 𝑎𝐷1,𝑀2
=

5+1

5+3
𝑎𝐷1,𝐼1 =

0+1

5+3
𝑎𝐷1,𝐷2 =

0+1

5+3

• What are the emission probabilities 

• 𝑒𝐷1 𝐴 = ? 𝑒𝐷1 𝐵 = ? …
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𝑴𝟏𝑴𝟐 𝑰𝟐 𝑴𝟑

B A ‒ ‒ ‒ Q

B A G ‒ C Q

- T G ‒ ‒ Q

B T ‒ F ‒ Q

- A ‒ ‒ C ‒

1 2 3 4 5 6

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8

𝐼0 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8

Begin 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 End



Building a profile HMM

• Multiple alignment is used to construct the HMM model.

• Assign each column to a Match state in HMM. Add Insertion and 
Deletion state. 

• Estimate the emission probabilities according to amino acid counts 
in column. Different positions in the protein will have different 
emission probabilities.

• Estimate the transition probabilities between Match, Deletion and
Insertion states

• The HMM model gets trained to derive the optimal parameters.
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𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8

𝐼0 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8

Begin 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 End



States of Profile HMM

• Match states    𝑀1, … ,𝑀𝑛 (plus 𝑏𝑒𝑔𝑖𝑛/𝑒𝑛𝑑 states) 

• Insertion states 𝐼0, 𝐼1, … , 𝐼𝑛
• Deletion states 𝐷1, … , 𝐷𝑛
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𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8

𝐼0 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8

Begin 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 End



Probabilities in 

Profile HMM

• Transition probabilities: 

• log 𝑎𝑀𝐼 + log(𝑎𝐷𝐼) = gap open penalty

• log(𝑎𝐼𝐼) = gap extension penalty

• Emission probabilities:

• Probability of emitting a symbol 𝑎 at an insertion state 𝐼𝑗:

𝑒𝐼𝑖(𝑎) = 𝑝(𝑎)

where 𝑝(𝑎) is the frequency of the occurrence of the symbol 𝑎 in all the 
sequences.
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Profile HMM Alignment

• Define 𝜈𝑗
𝑀(𝑖) as the log-odds score of the best path for matching 

𝑥1…𝑥𝑖 to profile HMM ending with 𝑥𝑖 emitted by the state 𝑀𝑗.

• 𝜈𝑗
𝐼(𝑖) is the log-odds score of the best path ending in 𝑥𝑖 being 

emitted by 𝐼𝑗 and

• 𝜈𝑗
𝐷(𝑖) is the log-odds score of the best path ending in state 𝐷𝑗.
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Profile HMM Alignment: 
Dynamic Programming
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𝜈𝑗
𝑀 𝑖 = log

𝑒𝑀𝑗
𝑥𝑖

𝑝 𝑥𝑖
+max

𝜈𝑗−1
𝑀 𝑖 − 1 + log 𝑎𝑀𝑗−1,𝑀𝑗

𝜈𝑗−1
𝐼 𝑖 − 1 + log 𝑎𝐼𝑗−1,𝑀𝑗

𝜈𝑗−1
𝐷 𝑖 − 1 + log 𝑎𝐷𝑗−1,𝑀𝑗

𝜈𝑗
𝐼 𝑖 = log

𝑒𝐼𝑗 𝑥𝑖

𝑝 𝑥𝑖
+max

𝜈𝑗
𝑀 𝑖 − 1 + log 𝑎𝑀𝑗,𝐼𝑗

𝜈𝑗
𝐼 𝑖 − 1 + log 𝑎𝐼𝑗,𝐼𝑗

𝜈𝑗
𝐷 𝑖 − 1 + log 𝑎𝐷𝑗,𝐼𝑗

𝜈𝑗
𝐷 𝑖 = max

𝜈𝑗−1
𝑀 𝑖 − 1 + log 𝑎𝑀𝑗−1,𝐷𝑗

𝜈𝑗−1
𝐼 𝑖 − 1 + log 𝑎𝐼𝑗−1,𝐷𝑗

𝜈𝑗−1
𝐷 𝑖 − 1 + log 𝑎𝐷𝑗−1,𝐷𝑗



Paths in Edit Graph and 
Profile HMM

A path through an edit graph and the corresponding path 
through a profile HMM
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Making a Collection of HMM 
for Protein Families

• Use Blast to separate a protein database into families of related 
proteins.

• Construct a multiple alignment for each protein family.

• Construct a profile HMM model and optimize the parameters of the 
model (transition and emission probabilities).

• Align the target sequence against each HMM to find the best fit 
between a target sequence and an HMM.
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Application of Profile HMM 
to Modeling Globin Proteins

• Globins represent a large collection of protein sequences 

• 400 globin sequences were randomly selected from all globins and 
used to construct a multiple alignment.

• Multiple alignment was used to assign an initial HMM

• This model then get trained repeatedly with model lengths chosen 
randomly between 145 to 170, to get an HMM model optimized 
probabilities. 
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How Good is the Globin 
HMM?

• 625 remaining globin sequences in the database were aligned to the 
constructed HMM resulting  in a multiple alignment. This multiple 
alignment agrees extremely well with the structurally derived 
alignment.

• 25 044 proteins were randomly chosen from the database and 

compared against the globin HMM.

• This experiment resulted in an excellent separation between globin 
and non-globin families.
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PFAM

• Pfam http://pfam.xfam.org/ describes protein domains

• Each protein domain family in Pfam has:

• Seed alignment: manually verified multiple alignment of a 
representative set of sequences.

• HMM built from the seed alignment for further database 
searches.

• Full alignment generated automatically from the HMM

• The distinction between seed and full alignments facilitates Pfam
updates.

• Seed alignments are stable resources.

• HMM profiles and full alignments can be updated with newly 
found amino acid sequences. 
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PFAM Uses

• Pfam HMMs span entire domains that include both well-conserved 
motifs and less-conserved regions with insertions and deletions.

• It results in modeling complete domains that facilitates better 
sequence annotation and leads to a more sensitive detection.
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Model Protein Family 
(Profile HMM)

• Create a statistical model (HMM) for a group of related protein 
sequences (e.g., protein family)

• Identify core (conserved) elements of homologous sequences

• Positional evolutionary information (e.g. insertion and deletion)
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Why do We Build a Profile 
(Model)?

• Understand the conservation (core function and structure elements) 
and variation

• Sequence generation

• Multiple sequence alignments

• Profile-sequence alignment (more sensitive than sequence-sequence 
alignment)

• Family/fold recognition

• Profile-profile alignment
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Protein Family

seq1 VRRNNMGMPLIESSSYHDALFTLGYAGDRISQMLGMRLLAQGRLSEMAGADALDV

seq2 NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFGLAMGNLSSWVGAKALSS

seq3 SAETYRDAWGIPHLRADTPHELARAQGTARDRAWQLEVERHRAQGTSASFLGPEALSW

seq4 DRLGVVTIDAANQLDAMRALGYAQERYFEMDLMRRAPAGELSELFGAKAVDL

seq1 ---VRRNNMGMPLIESSSYHDALFTLGY--AGDRISQMLGMRLLAQGRLSEMAGADALDV

seq2 --NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFG-LAMGNLSSWVGAKALSS

seq3 SAETYRDAWGIPHLRADTPHELARAQGT--ARDRAWQLEVERHRAQGTSASFLGPEALSW

seq4 ------DRLGVVTIDAANQLDAMRALGY—AQERYFEMDLMRRAPAGELSELFGAKAVDL

• Imagine these sequences evolve from a single ancestral sequence 
and undergo evolutionary mutations. How to use a HMM to model?
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Key to Build a HMM is to 
Set Up States

• Think about the positions of the ancestral sequence is undergoing 
mutation events to generate new sequences in difference species. A 
position can be modeled by a dice.

1. Match (match or mutate): the position is kept with or without 
variations/mutations.

2. Delete: the position is deleted

3. Insert: amino acids are inserted between two positions.

Machine Learning in Bioinformatics 10717 May 2019



Hidden Markov Model

• Each match state has an emission distribution of 20 amino acids; 
one match state for a position.
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𝐵𝑒𝑔𝑖𝑛 𝑀1 𝑀2 𝑀3 𝑀4 𝐸𝑛𝑑



Hidden Markov Model

• Each match state has an emission distribution of 20 amino acids; 
one match state for a position.

• Deletion state is a mute state (emitting a dummy)
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𝐵𝑒𝑔𝑖𝑛 𝑀1 𝑀2 𝑀3 𝑀4 𝐸𝑛𝑑

𝐷1 𝐷𝟐 𝐷𝟑 𝐷𝟒



Hidden Markov Model
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• Each match state has an emission distribution of 20 amino acids; 
one match state for a position.

• Deletion state is a mute state (emitting a dummy)

• Each insertion state has an emission distribution of 20 amino acids.

𝐵𝑒𝑔𝑖𝑛 𝑀1 𝑀2 𝑀3 𝑀4 𝐸𝑛𝑑

𝐷1 𝐷𝟐 𝐷𝟑 𝐷𝟒

𝐼1𝐼𝟎 𝐼𝟐 𝐼𝟑 𝐼𝟒



Hidden Markov Model
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• How many states? (𝑀 positions: length of model)

𝑀(match)+𝑀(deletion)+ 𝑀 + 1 (insertion)+2 = 3𝑀 + 3

𝐵𝑒𝑔𝑖𝑛 𝑀1 𝑀2 𝑀3 𝑀4 𝐸𝑛𝑑

𝐷1 𝐷𝟐 𝐷𝟑 𝐷𝟒

𝐼1𝐼𝟎 𝐼𝟐 𝐼𝟑 𝐼𝟒



Hidden Markov Model
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• How many transitions? (𝑀 positions = length of the model)

• Deletion: 3𝑀 − 1, Match: 3𝑀 − 1, Insertion: 3 𝑀 + 1 − 1, B/E: 3

• Total = 9𝑀 + 3.

𝐵𝑒𝑔𝑖𝑛 𝑀1 𝑀2 𝑀3 𝑀4 𝐸𝑛𝑑

𝐷1 𝐷𝟐 𝐷𝟑 𝐷𝟒

𝐼1𝐼𝟎 𝐼𝟐 𝐼𝟑 𝐼𝟒



Initialization of HMM

• How to decide model length (the number of match states)?

• Learn: Use a range of model lengths (centered at the average 

sequence length). If transition probability from a match (𝑀𝑖) 

state to a delete state (𝐷𝑖+1)> 0.5, remove the 𝑀𝑖+1. If 

transition probability from a match (𝑀𝑖) state to an insertion 

state (𝐼𝑖+1) > 0.5, add a match state.

• Get from multiple alignment: assign a match state to any 

column with < 50% gaps.

• How to initialize transition probabilities?

• How to initialize emission probabilities?
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Initialization of HMM

• How to decide model length (the number of match states)?

• How to initialize transition probabilities?

• Uniform initialization of transition probabilities is O.K. in most 
cases.

• How to initialize emission probabilities?

• Uniform initialization of emission probability of insert state is 
O.K. in many cases.

• Uniform initialization of emission probability of match state is 
bad. (leads to bad local minima)

• Using amino acid distribution to initialize the emission 
probabilities is better. (need regularization / smoothing to avoid 
zero)
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Initialize from Multiple 
Alignments

seq1 ---VRRNNMGMPLIESSSYHDALFTLGY--AGDRISQMLGMRLLAQGRLSEMAGADALDV

seq2 --NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFG-LAMGNLSSWVGAKALSS

seq3 SAETYRDAWGIPHLRADTPHELARAQGT--ARDRAWQLEVERHRAQGTSASFLGPEALSW

seq4 ------DRLGVVTIDAANQLDAMRALGY—AQERYFEMDLMRRAPAGELSELFGAKAVDL

• First, assign match/main states, delete states, insert states from 
multiple sequence alignment

• Get the path of each sequence

• Count the amino acid frequencies emitted from match or insert 
states, which are converted into probabilities for each state (need 
smoothing/regularization/pseudo-count).

• Count the number of state transitions and use them to initialize 
transition probabilities.
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Estimate Parameters 
(Learning)

• We want to find a set of parameters to maximize the probability of 
the observed sequences in the family: 

• maximum likelihood: 

𝑃 𝒙 Θ = 𝑃 𝒙 1 Θ ⋅ … ⋅ 𝑃(𝒙 𝑚 ∣ Θ).

• Baum-Welch’s algorithm (or EM algorithm) (see above slides)
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Visualization of Features 
and Structure in HMM

• Myoglobin protein family. How to interpret it? [Krogh et al. 94]
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Protein Family Profile HMM
Databases

• Pfam database (http://xpfam.pfam.org )

• PROSITE profiles database (http://prosite.expasy.org/ ) – protein 
domains, families and functional sites as well as associated patterns 
and profiles to identify them

• What Can We Do With the HMM?

• Recognition and classification: 

• Widely used for database search: does a new sequence belong to 
the family? (database search)

• Idea: The sequences belonging to the family (or generated from 
HMM) should receive higher probability than the sequence not 
belong to the family (unrelated sequences).
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Two Ways to Search

1. Build a HMM for each family in the database. Search a query 
sequence against the database of HMMs. (Pfam)

2. Build a HMM for a query family, and search HMM against of a 
database of sequences
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Compute 
𝑃(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 𝐻𝑀𝑀)

• Forward algorithm to compute 𝑃(𝒙 ∣ Θ)

• We work on: −log(𝑃(𝒙 ∣ Θ)): distance from the sequence to the 

model. (Negative Log Likelihood score – NLL)

• Unfortunately, −log(𝑃(𝒙 ∣ Θ)) is length dependent. So what can we 

do?

• Normalize the Score into Z-score

• Search the profile against a large database such as Swiss-Prot

• Plot –log(P(x | )), NLL scores, against sequence length.
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Normalize the Score into 
Z-score

• NLL score is linear to sequence length.

• NLL scores of the same family is lower than un-related sequences

• We need normalization.
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Example: G-Protein-

Coupled Receptors

• Transmembrane proteins 

for signaling between 

environment and a cell



Normalize the Score 
into Z-score

• Compute Z-score: 
|𝑠−𝜇|

𝜎

• 𝑍 > 4: the sequence is very 
different from unrelated 
sequence (for non-database 
search, a randomization can 
work)

• NULL model of unrelated 
sequences:

17 May 2019 122Machine Learning in Bioinformatics

Length Mean 
NLL (𝝁)

Std (𝝈)

100 500 5

101 550 6

…

…



Pairwise Alignment via 
HMM
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HMM for Multiple Sequence 
Alignment

• Build a HMM for a group of sequences

• Align each sequence against HMM using Viterbi algorithm to find the 
most likely path. (dynamic programming)

• Match the main/match states of these paths together.

• Add gaps for delete states

• For insertion between two positions, use the longest insertion of a 
sequence as template. Add gaps to other sequence if necessary.
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Similarity between HMMs
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COACH Approach

• COACH stands for Comparison Of Alignments by Constructing HMMs 

• Given two families of sequences, build a multiple alignment (MSA) 
for each one of them.

• Build HMM from one MSA

• Align another MSA against the HMM (match each column of amino 
acids against states in the HMM)

• How to do Local Alignment:

• With respect to sequence: add an insertion state right after the 
start state and right before the end state.

• With respect to HMM: start state can jump to any match state 
and any match state can jump to end state.
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HMM Software 
and Code

• HMMER: http://hmmer.org – biosequence analysis using profile 
hidden Markov models

• The MPI Bioinformatics Toolkit http://toolkit.tuebingen.mpg.de many 
tools HHxxxx (based on HMM-HMM comparison)

• PRC-HMM – the profile comparer: http://supfam.mrc-
lmb.cam.ac.uk/PRC/

• COACH: profile-profile alignment of protein families using hidden 
Markov models : http://www.drive5.com/lobster/

• HMMCOMP – HMM-HMM comparison: http://users-
cs.au.dk/cstorm/hmmcomp/

• MUSCLE – multiple alignment software: 
http://www.drive5.com/muscle/
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