
MACHINE LEARNING IN
BIOINFORMATICS

Part 8: Neural Networks

František Mráz

KSVI MFF UKAdapted slides of Jianlin Cheng

Department of Computer Science University of

Missouri, 2012

Neural networks

• Both supervised and unsupervised learning

• Both regression (a real-value output) and classification (discrete
output)

• Background:

1. Neurology – artificial intelligence would like to utilize it

2. Statistics – linear regression, generalized linear regression,
discriminant analysis

2

Neuron

• Output unit

• Input units

𝑓

𝑜 output

Target: 𝑦

1 𝑥1 𝑥𝑑…

𝑤0 𝑤1 𝑤𝑑

𝑎 = ∑𝑤𝑖𝑥𝑖 Activation

Activation function 𝑓 is used

to convert 𝑎 to output. Here

it is a linear function: 𝑜 = 𝑓 𝑎 .

3

Input vector 𝑥1, … , 𝑥𝑑

bias

Activation functions

• Linear 𝑓 𝑎 = 𝑎

• Sigmoid 𝑓 𝑎 =
1

1+𝑒−𝑎

• Hyperbolic tangent 𝑓 𝑎 =
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎

• Rectified linear unit 𝑓 𝑎 = ቊ
0 for 𝑎 < 0
𝑎 for 𝑎 ≥ 0

• …

4

Multi-Layer Neural
Network


=

d

i

iji xw
0

• Output: Activation function: 𝑓
(linear, sigmoid, softmax)

• Hidden layers: Activation
function: 𝑔 (linear, tanh,

sigmoid)

• Input: no activation function

5

…

…

…

𝑦1 𝑦𝑐

𝑥1 𝑥𝑖
𝑥𝑑

𝑦𝑘

𝑧1 𝑧𝑗
𝑧𝑀

𝑤𝑗𝑖𝑤11 𝑤1𝑖

𝑤𝑘𝑗

𝑧0 = 1

1

𝑥0

Multi-Layer Perceptron

• Two-layer neural network (one hidden and one output) with non-
linear activation function is a universal function approximator

• it can approximate any numeric function with arbitrary precision
given a set of appropriate weights and hidden units.

• In early days, usually two-layer (or three-layer if you count the input
as one layer) neural network. Increasing the number of layers was
occasionally helpful.

• Later expanded into deep learning with many layers

6

Adjust Weights by Training

• How to adjust weights?

• Adjust weights using known examples (training data)

𝑥1
1
, 𝑥2

1
, … , 𝑥𝑑

1
, 𝑡 1 , … , 𝑥1

𝑛
, 𝑥2

𝑛
, … , 𝑥𝑑

𝑛
, 𝑡 𝑛

where 𝑡 𝑖 are the target (desired) outputs

• Try to adjust weights so that the difference between the output of the
neural network 𝑦 and 𝑡 (target) becomes smaller and smaller.

• Goal is to minimize error function

𝐸 =෍

𝑖=1

𝑛

𝑦 𝑖 − 𝑡 𝑖 2

where 𝑦 𝑖 is the actual output of the network

• Idea: gradient descent – update weight according

𝑤𝑖𝑗 𝑡 + 1 = 𝑤𝑖𝑗 𝑡 − 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗

7

Learning rate
𝑡 is time

Algorithm

• Initialize weights 𝑤

• Repeat

For each data point 𝑥, do the following:

Forward propagation: compute outputs and activations

Backward propagation: compute errors for each output units
and hidden units. Compute gradient for each weight.

Update weight 𝑤 = 𝑤 − 𝜂
𝜕𝐸

𝜕𝑤

• Until a given number of iterations or errors drops below a
threshold.

8

Recurrent Network

…

…

…

𝑦1 𝑦𝑐

𝑥1 𝑥𝑖
𝑥𝑑

𝑦𝑘

𝑧1 𝑧𝑗
𝑧𝑀

𝑤ji𝑤11 𝑤1𝑖

𝑤𝑘𝑗

𝑤

Forward:

At time 1: present 𝑥1, 0
At time 2: present 𝑥2, 𝑦1
……

Backward:

Time 𝑡: back-propagate

Time 𝑡 − 1: back-propagate with

Output errors and errors from previous step 9

Recurrent Neural Network

1. Recurrent network is essentially a series of feed-forward

neural networks sharing the same weights

2. Recurrent network is good for time series data and sequence

data such as biological sequences and stock series

10

Overfitting and Good
Fitting

11

Overfitting

Good fitting

• very close modeling of training data with accidental

regularities caused by sampling

• Overfitting function can not generalize well to unseen data.

Preventing Overfitting

• Use a model that has the right capacity:

• enough to model the true regularities

• not enough to also model the spurious regularities (assuming
they are weaker).

• Standard ways to limit the capacity of a neural net:

• Limit the number of hidden units.

• Limit the size of the weights – weigh decay

• Stop the learning before it has time to overfit
• Divide the total dataset into three subsets:

1. Training data – for learning the parameters of the model.

2. Validation data – for deciding what type of model and what amount of
regularization works best.

3. Test data – to estimate of how well the network works. We expect this
estimate to be worse than on the validation data.

12

Four Ways to Speed up
Learning

1. Use an adaptive global learning rate

• Increase the rate slowly if its not diverging

• Decrease the rate quickly if it starts diverging

2. Use separate adaptive learning rate on each connection

• Adjust using consistency of gradient on that weight axis

3. Use momentum

• Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity.

4. Use a stochastic estimate of the gradient from a few cases

• This works very well on large, redundant datasets.

13

Problems of Neural
Networks

• Vanishing gradients

• Cannot use unlabeled data

• Hard to understand the relationship between input and output

• Cannot generate data

14

Deep AutoEncoder

15

Deep Convolution
Neural Network

16

